[1] Russell WC. Adenoviruses: update on structure and function. J Gen Virol, 2009; 90, 1−20. doi:  10.1099/vir.0.003087-0
[2] Davison AJ, Benkő M, Harrach B. Genetic content and evolution of adenoviruses. J Gen Virol, 2003; 84, 2895−908. doi:  10.1099/vir.0.19497-0
[3] Walsh MP, Seto J, Jones MS, et al. Computational analysis identifies human adenovirus type 55 as a re-emergent acute respiratory disease pathogen. J Clin Microbiol, 2010; 48, 991−3. doi:  10.1128/JCM.01694-09
[4] Seto D, Chodosh J, Brister JR, et al. Using the whole-genome sequence to characterize and name human adenoviruses. J Virol, 2011; 85, 5701−2. doi:  10.1128/JVI.00354-11
[5] Lion T. Adenovirus infections in immunocompetent and immunocompromised patients. Clin Microbiol Rev, 2014; 27, 441−62. doi:  10.1128/CMR.00116-13
[6] Lynch III JP, Kajon AE. Adenovirus: epidemiology, global spread of novel serotypes, and advances in treatment and prevention. Semin Respir Crit Care Med, 2016; 37, 586−602. doi:  10.1055/s-0036-1584923
[7] Liu LY, Qian Y, Zhang Y, et al. Adenoviruses associated with acute diarrhea in children in Beijing, China. PLoS One, 2014; 9, e88791. doi:  10.1371/journal.pone.0088791
[8] Zhang L, Zhao N, Sha J, et al. Virology and epidemiology analyses of global adenovirus-associated conjunctivitis outbreaks, 1953-2013. Epidemiol Infect, 2016; 144, 1661−72. doi:  10.1017/S0950268815003246
[9] Ma XL, Wu YT, De R, et al. Impact of co-infections and immune responses on clinical severity of human adenovirus 3 and 7 infections in hospitalized children with lower respiratory tract infections: a comparative study. Front Cell Infect Microbiol, 2025; 14, 1482787. doi:  10.3389/fcimb.2024.1482787
[10] Fu YX, Tang ZZ, Ye ZX, et al. Human adenovirus type 7 infection causes a more severe disease than type 3. BMC Infect Dis, 2019; 19, 36. doi:  10.1186/s12879-018-3651-2
[11] Lai CY, Lee CJ, Lu CY, et al. Adenovirus serotype 3 and 7 infection with acute respiratory failure in children in Taiwan, 2010-2011. PLoS One, 2013; 8, e53614. doi:  10.1371/journal.pone.0053614
[12] Lukashev AN, Ivanova OE, Eremeeva TP, et al. Evidence of frequent recombination among human adenoviruses. J Gen Virol, 2008; 89, 380−8. doi:  10.1099/vir.0.83057-0
[13] Lu GL, Peng XM, Li RQ, et al. An outbreak of acute respiratory infection at a training base in Beijing, China due to human adenovirus type B55. BMC Infect Dis, 2020; 20, 537. doi:  10.1186/s12879-020-05258-2
[14] Yoo H, Gu SH, Jung J, et al. Febrile respiratory illness associated with human adenovirus type 55 in south Korea military, 2014-2016. Emerg Infect Dis, 2017; 23, 1016−20. doi:  10.3201/eid2306.161848
[15] Zhao SH, Wan CS, Ke CW, et al. Re-emergent human adenovirus genome type 7d caused an acute respiratory disease outbreak in Southern China after a twenty-one year absence. Sci Rep, 2014; 4, 7365. doi:  10.1038/srep07365
[16] Yu ZW, Zeng ZW, Zhang J, et al. Fatal community-acquired pneumonia in children caused by re-emergent human adenovirus 7d associated with higher severity of illness and fatality rate. Sci Rep, 2016; 6, 37216. doi:  10.1038/srep37216
[17] Rebelo-de-Andrade H, Pereira C, Giria M, et al. Outbreak of acute respiratory infection among infants in Lisbon, Portugal, caused by human adenovirus serotype 3 and a new 7/3 recombinant strain. J Clin Microbiol, 2010; 48, 1391−6. doi:  10.1128/JCM.02019-09
[18] Li ZJ, Zhang HY, Ren LL, et al. Etiological and epidemiological features of acute respiratory infections in China. Nat Commun, 2021; 12, 5026. doi:  10.1038/s41467-021-25120-6
[19] Wang FM, Yang CY, Qian Y, et al. Clinical characteristics of human adenovirus infection in hospitalized children with acute respiratory infection in Beijing. Chin J Pediatr, 2022; 60, 30−5. (In Chinese)
[20] Yao LH, Wang C, Wei TL, et al. Human adenovirus among hospitalized children with respiratory tract infections in Beijing, China, 2017-2018. Virol J, 2019; 16, 78. doi:  10.1186/s12985-019-1185-x
[21] Li X, Chen B, Zhang SY, et al. Rapid detection of respiratory pathogens for community-acquired pneumonia by capillary electrophoresis-based multiplex PCR. SLAS Technol, 2019; 24, 105−16. doi:  10.1177/2472630318787452
[22] Wu XW, Zhang J, Lan WD, et al. Molecular typing and rapid identification of human adenoviruses associated with respiratory diseases using universal PCR and sequencing primers for the three major capsid genes: penton base, hexon, and fiber. Front Microbiol, 2022; 13, 911694. doi:  10.3389/fmicb.2022.911694
[23] Mao NY, Zhu Z, Rivailler P, et al. Multiple divergent Human mastadenovirus C co-circulating in mainland of China. Infect Genet Evol, 2019; 76, 104035. doi:  10.1016/j.meegid.2019.104035
[24] Chen SF, Zhou YQ, Chen YR, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018; 34, i884−90. doi:  10.1093/bioinformatics/bty560
[25] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012; 9, 357−9. doi:  10.1038/nmeth.1923
[26] Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol, 2014; 15, R46. doi:  10.1186/gb-2014-15-3-r46
[27] Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol, 2011; 29, 644−52. doi:  10.1038/nbt.1883
[28] Martin DP, Murrell B, Golden M, et al. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol, 2015; 1, vev003. doi:  10.1093/ve/vev003
[29] Ovcharenko I, Loots GG, Hardison RC, et al. zPicture: dynamic alignment and visualization tool for analyzing conservation profiles. Genome Res, 2004; 14, 472−7. doi:  10.1101/gr.2129504
[30] Olsen SJ, Winn AK, Budd AP, et al. Changes in influenza and other respiratory virus activity during the COVID-19 pandemic — United States, 2020-2021. MMWR Morb Mortal Wkly Rep, 2021; 70, 1013−9. doi:  10.15585/mmwr.mm7029a1
[31] Lee NJ, Woo S, Rhee JE, et al. Increased trend of adenovirus activity after the COVID-19 pandemic in South Korea: analysis of national surveillance data. Ann Lab Med, 2024; 44, 581−5. doi:  10.3343/alm.2023.0484
[32] Wang FM, Zhu RN, Qian Y, et al. The changed endemic pattern of human adenovirus from species B to C among pediatric patients under the pressure of non-pharmaceutical interventions against COVID-19 in Beijing, China. Virol J, 2023; 20, 4. doi:  10.1186/s12985-023-01962-y
[33] Zeng H, Cai MH, Li SQ, et al. Epidemiological characteristics of seasonal influenza under implementation of zero-COVID-19 strategy in China. J Infect Public Health, 2023; 16, 1158−66. doi:  10.1016/j.jiph.2023.05.014
[34] Jiang ML, Xu YP, Wu H, et al. Changes in endemic patterns of respiratory syncytial virus infection in pediatric patients under the pressure of nonpharmaceutical interventions for COVID-19 in Beijing, China. J Med Virol, 2023; 95, e28411. doi:  10.1002/jmv.28411
[35] Jin RH, Qin T, Li P, et al. Increased circulation of adenovirus in China during 2023-2024: association with an increased prevalence of species B and school-associated transmission. J Infect, 2025; 90, 106475. doi:  10.1016/j.jinf.2025.106475
[36] Abdullah O, Fall A, Klein E, et al. Increased circulation of human adenovirus in 2023: an investigation of the circulating genotypes, upper respiratory viral loads, and hospital admissions in a large academic medical center. J Clin Microbiol, 2024; 62, e01237−23.
[37] Robinson CM, Singh G, Henquell C, et al. Computational analysis and identification of an emergent human adenovirus pathogen implicated in a respiratory fatality. Virology, 2011; 409, 141−7. doi:  10.1016/j.virol.2010.10.020
[38] Park A, Lee C, Lee JY. Genomic evolution and recombination dynamics of human adenovirus D species: insights from comprehensive bioinformatic analysis. J Microbiol, 2024; 62, 393−407. doi:  10.1007/s12275-024-00112-5
[39] Wang FM, De R, Han ZZ, et al. High-frequency recombination of human adenovirus in children with acute respiratory tract infections in Beijing, China. Viruses, 2024; 16, 828. doi:  10.3390/v16060828
[40] Duan YL, Xu BP, Li CC, et al. Molecular characteristics of human adenovirus type 3 circulating in parts of China during 2014-2018. Front Microbiol, 2021; 12, 688661. doi:  10.3389/fmicb.2021.688661