[1] Banks RD, Brinkley JW, Allnutt R, et al. Human response to acceleration. In: Davis JR, Johnson R, Stepanek J, Fogarty JA (eds). Fundamentals of aerospace medicine. 4th ed. Philadelphia: Lippincott Williams & Wilkins, 2008; 83-109.
[2] Hodkinson PD, Anderton RA, Posselt BN, et al. An overview of space medicine. Br J Anaesth, 2017; 119, i143−53. doi:  10.1093/bja/aex336
[3] Burton RR, Whinney JE. Biodynamics sustained acceleration. In: Dehart LR, Davis RJ (eds). Fundamentals of aerospace medicine. 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2002; 122-53.
[4] Nishida Y, Maruyama S, Shouji I, et al. Effects and biological limitations of +Gz acceleration on the autonomic functions-related circulation in rats. J Physiol Sci, 2016; 66, 447−62. doi:  10.1007/s12576-016-0461-4
[5] Kobayashi A, Tong A, Kikukawa A. Pilot cerebral oxygen status during air-to-air combat maneuvering. Aviat Space Environ Med, 2002; 73, 919−24.
[6] Kaliakin VV, Bukhtiiarov IV, Vasilév AI. Study of mineral saturation of lumbar vertebral bones in the course of systemic exposure to +Gz accelerations. Aviakosm Ekolog Med, 1996; 30, 9−13.
[7] Naumann FL, Bennell KL, Wark JD. The effects of +Gz force on the bone mineral density of fighter pilots. Aviat Space Environ Med, 2001; 72, 177−81.
[8] Canciani B, Ruggiu A, Giuliani A, et al. Effects of long time exposure to simulated micro- and hypergravity on skeletal architecture. J Mech Behav Biomed Mater, 2015; 51, 1−12. doi:  10.1016/j.jmbbm.2015.06.014
[9] Gnyubkin V, Guignandon A, Laroche N, et al. Effects of chronic hypergravity: from adaptive to deleterious responses in growing mouse skeleton. J Appl Physiol, 2015; 119, 908−17. doi:  10.1152/japplphysiol.00364.2015
[10] Martinez DA, Orth MW, Carr KE, et al. Cortical bone responses to 2G hypergravity in growing rats. Aviat Space Environ Med, 1998; 69, A17−22.
[11] Kawao N, Morita H, Obata K, et al. The vestibular system is critical for the changes in muscle and bone induced by hypergravity in mice. Physiol Rep, 2016; 4, e12979. doi:  10.14814/phy2.12979
[12] Huang Y, Dai ZQ, Ling SK, et al. Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells. J Biomed Sci, 2009; 16, 87. doi:  10.1186/1423-0127-16-87
[13] Prodanov L, van Loon JJ, te Riet J, et al. Substrate nanotexture and hypergravity through centrifugation enhance initial osteoblastogenesis. Tissue Eng Part A, 2013; 19, 114−24. doi:  10.1089/ten.tea.2012.0267
[14] Rocca A, Marino A, Rocca V, et al. Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts. Int J Nanomedicine, 2015; 10, 433−45. doi:  10.2217/nnm.14.188
[15] Nose K, Shibanuma M. Induction of early response genes by hypergravity in cultured mouse osteoblastic cells (MC3T3-E1). Exp Cell Res, 1994; 211, 168−70. doi:  10.1006/excr.1994.1073
[16] Fitzgerald J, Hughes-Fulford M. Gravitational loading of a simulated launch alters mRNA expression in osteoblasts. Exp Cell Res, 1996; 228, 168−71. doi:  10.1006/excr.1996.0313
[17] Gebken J, Lüders B, Notbohm H, et al. Hypergravity stimulates collagen synthesis in human osteoblast-like cells: evidence for the involvement of p44/42 MAP-kinases (ERK 1/2). J Biochem, 1999; 126, 676−82. doi:  10.1093/oxfordjournals.jbchem.a022502
[18] Saito M, Soshi S, Fujii K. Effect of hyper- and microgravity on collagen post-translational controls of MC3T3-E1 osteoblasts. J Bone Miner Res, 2003; 18, 1695−705. doi:  10.1359/jbmr.2003.18.9.1695
[19] Kawashima K, Shibata R, Negishi Y, et al. Stimulative effect of high-level hypergravity on differentiated functions of osteoblast-like cells. Cell Struct Funct, 1998; 23, 221−9. doi:  10.1247/csf.23.221
[20] Furutsu M, Kawashima K, Negishi Y, et al. Bidirectional effects of hypergravity on the cell growth and differentiated functions of osteoblast-like ROS17/2.8 cells. Biol Pharm Bull, 2000; 23, 1258−61. doi:  10.1248/bpb.23.1258
[21] Morita S, Nakamura H, Kumei Y, et al. Hypergravity stimulates osteoblast phenotype expression: a therapeutic hint for disuse bone atrophy. Ann N Y Acad Sci, 2004; 1030, 158−61. doi:  10.1196/annals.1329.020
[22] Haigneré C, Jonas P, Khayat P, et al. Bone height measurements around a dental implant after a 6-month space flight: a case report. Int J Oral Maxillofac Implants, 2006; 21, 450−4.
[23] Centrifuge high G training scheme and evaluation for high performance aircraft pilots. GJB4423-2002. China: The ministry of health of the general logistics department of the people's liberation army, 2002.
[24] Stupakov GP, Khomenko MN. Selection and special physiological training of flying personnel to high +Gz-maneuverable flights-main concept//Advisory Group for Aerospace Research & Development (AGARD). Current concepts on G-protection research and development. AGARD-LS-202. France: North Atlantic Treaty Organization (NATO), 1995; 3.1-3.15.
[25] Nkenke E, Kloss F, Wiltfang J, et al. Histomorphometric and fluorescence microscopic analysis of bone remodelling after installation of implants using an osteotome technique. Clin Oral Implants Res, 2002; 13, 595−602. doi:  10.1034/j.1600-0501.2002.130604.x
[26] Tatara AM, Lipner JH, Das R, et al. The role of muscle loading on bone (Re)modeling at the developing enthesis. PLoS One, 2014; 9, e97375. doi:  10.1371/journal.pone.0097375
[27] Lian Z, Guan H, Ivanovski S, et al. Effect of bone to implant contact percentage on bone remodelling surrounding a dental implant. Int J Oral Maxillofac Surg, 2010; 39, 690−8. doi:  10.1016/j.ijom.2010.03.020
[28] Roberts WE. Bone tissue interface. J Dent Educ, 1988; 52, 804−9.
[29] Cordioli G, Majzoub Z, Piattelli A, et al. Removal torque and histomorphometric investigation of 4 different titanium surfaces: an experimental study in the rabbit tibia. Int J Oral Maxillofac Implants, 2000; 15, 668−74.
[30] Giavaresi G, Ambrosio L, Battiston GA, et al. Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic chemical vapour deposition: an in vivo study. Biomaterials, 2004; 25, 5583−91. doi:  10.1016/j.biomaterials.2004.01.017
[31] Araújo MG, Wennström JL, Lindhe J. Modeling of the buccal and lingual bone walls of fresh extraction sites following implant installation. Clin Oral Implants Res, 2006; 17, 606−14. doi:  10.1111/j.1600-0501.2006.01315.x
[32] Schropp L, Wenzel A, Kostopoulos L, et al. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodontics Restorative Dent, 2003; 23, 313−23.
[33] Weber JB, Mayer L, Cenci RA, et al. Effect of three different protocols of low-level laser therapy on thyroid hormone production after dental implant placement in an experimental rabbit model. Photomed Laser Surg, 2014; 32, 612−7. doi:  10.1089/pho.2014.3756
[34] Jayesh RS, Dhinakarsamy V. Osseointegration. J Pharm Bioallied Sci, 2015; 7, S226−9. doi:  10.4103/0975-7406.160034
[35] Parithimarkalaignan S, Padmanabhan TV. Osseointegration: an update. J Indian Prosthodont Soc, 2013; 13, 2−6. doi:  10.1007/s13191-013-0252-z
[36] Feng SW, Ho KN, Chan YH, et al. Damping factor as a diagnostic parameter for assessment of osseointegration during the dental implant healing process: an experimental study in rabbits. Ann Biomed Eng, 2016; 44, 3668−78. doi:  10.1007/s10439-016-1675-6
[37] Carinci F, Pezzetti F, Volinia S, et al. Analysis of MG63 osteoblastic-cell response to a new nanoporous implant surface by means of a microarray technology. Clin Oral Implants Res, 2004; 15, 180−6. doi:  10.1111/j.1600-0501.2004.00997.x
[38] Kim CS, Sohn SH, Jeon SK, et al. Effect of various implant coatings on biological responses in MG63 using cDNA microarray. J Oral Rehabil, 2006; 33, 368−79. doi:  10.1111/j.1365-2842.2005.01553.x
[39] Kojima N, Ozawa S, Miyata Y, et al. High-throughput gene expression analysis in bone healing around titanium implants by DNA microarray. Clin Oral Implants Res, 2008; 19, 173−81. doi:  10.1111/j.1600-0501.2007.01432.x
[40] Carpenter RS, Goodrich LR, Frisbie DD, et al. Osteoblastic differentiation of human and equine adult bone marrow-derived mesenchymal stem cells when BMP-2 or BMP-7 homodimer genetic modification is compared to BMP-2/7 heterodimer genetic modification in the presence and absence of dexamethasone. J Orthop Res, 2010; 28, 1330−7. doi:  10.1002/jor.21126
[41] Nohe A, Keating E, Knaus P, et al. Signal transduction of bone morphogenetic protein receptors. Cell Signal, 2004; 16, 291−9. doi:  10.1016/j.cellsig.2003.08.011
[42] Standal T, Borset M, Sundan A. Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol, 2004; 26, 179−84.
[43] Perrien DS, Brown EC, Aronson J, et al. Immunohistochemical study of osteopontin expression during distraction osteogenesis in the rat. J Histochem Cytochem, 2002; 50, 567−74. doi:  10.1177/002215540205000414
[44] Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am, 2002; 84-A, 1032−44.
[45] Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology, 2001; 142, 5050−5. doi:  10.1210/endo.142.12.8536
[46] Trouvin AP, Goëb V. Receptor activator of nuclear factor-ĸB ligand and osteoprotegerin: maintaining the balance to prevent bone loss. Clin Interv Aging, 2010; 5, 345−54.
[47] Trisi P, Berardini M, Falco A, et al. Validation of value of actual micromotion as a direct measure of implant micromobility after healing (secondary implant stability). An in vivo histologic and biomechanical study. Clin Oral Implants Res, 2016; 27, 1423−30. doi:  10.1111/clr.12756
[48] Wazen RM, Currey JA, Guo H, et al. Micromotion-induced strain fields influence early stages of repair at bone-implant interfaces. Acta Biomater, 2013; 9, 6663−74. doi:  10.1016/j.actbio.2013.01.014
[49] Winter W, Klein D, Karl M. Micromotion of dental implants: basic mechanical considerations. J Med Eng, 2013; 2013, 265412.
[50] Pierrisnard L, Hure G, Barquins M, et al. Two dental implants designed for immediate loading: a finite element analysis. Int J Oral Maxillofac Implants, 2002; 17, 353−62.