[1] IARC. Outdoor air pollution. IARC. 2013, 9-444.
[2] Vattanasit U, Navasumrit P, Khadka MB, et al. Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles. Int J Hyg Environ Health, 2014; 217, 23−33. doi:  10.1016/j.ijheh.2013.03.002
[3] Harrison RM. Airborne particulate matter. Philos Trans A Math Phys Eng Sci, 2020; 378, 20190319.
[4] Ghio AJ, Carraway MS, Madden MC. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J Toxicol Environ Health B Crit Rev, 2012; 15, 1−21. doi:  10.1080/10937404.2012.632359
[5] Feng S L, Gao D, Liao F, et al. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf, 2016; 128, 67−74. doi:  10.1016/j.ecoenv.2016.01.030
[6] IARC. World cancer report: cancer research for cancer prevention. 2020, 15-572.
[7] Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol, 2019; 5, 1749−68. doi:  10.1001/jamaoncol.2019.2996
[8] Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell, 2017; 168, 670−91. doi:  10.1016/j.cell.2016.11.037
[9] Yin L, Liu XT, Shao XJ, et al. The role of exosomes in lung cancer metastasis and clinical applications: an updated review. J Transl Med, 2021; 19, 312. doi:  10.1186/s12967-021-02985-1
[10] Laden F, Schwartz J, Speizer FE, et al. Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med, 2006; 173, 667−72. doi:  10.1164/rccm.200503-443OC
[11] Chao X, Yi L, Lan LL, et al. Long-term PM2.5 exposure increases the risk of non-small cell lung cancer (NSCLC) progression by enhancing interleukin-17a (IL-17a)-regulated proliferation and metastasis. Aging, 2020; 12, 11579−602. doi:  10.18632/aging.103319
[12] Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science, 2020; 367, eaau6977. doi:  10.1126/science.aau6977
[13] Keller S, Ridinger J, Rupp AK, et al. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med, 2011; 9, 86. doi:  10.1186/1479-5876-9-86
[14] Kim JE, Eom JS, Kim WY, et al. Diagnostic value of microRNAs derived from exosomes in bronchoalveolar lavage fluid of early-stage lung adenocarcinoma: a pilot study. Thorac Cancer, 2018; 9, 911−5. doi:  10.1111/1759-7714.12756
[15] Kojima M, Gimenes-Junior JA, Langness S, et al. Exosomes, not protein or lipids, in mesenteric lymph activate inflammation: unlocking the mystery of post-shock multiple organ failure. J Trauma Acute Care Surg, 2017; 82, 42−50. doi:  10.1097/TA.0000000000001296
[16] Javeed N, Mukhopadhyay D. Exosomes and their role in the micro-/macro-environment: a comprehensive review. J Biomed Res, 2017; 31, 386−94. doi:  10.7555/JBR.30.20150162
[17] Li Q, Li BW, Li Q, et al. Exosomal miR-21-5p derived from gastric cancer promotes peritoneal metastasis via mesothelial-to-mesenchymal transition. Cell Death Dis, 2018; 9, 854. doi:  10.1038/s41419-018-0928-8
[18] Lin QS, Chen XS, Meng FZ, et al. ASPH-notch axis guided exosomal delivery of prometastatic secretome renders breast cancer multi-organ metastasis. Mol Cancer, 2019; 18, 156. doi:  10.1186/s12943-019-1077-0
[19] Zhang XN, Sai BQ, Wang F, et al. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer, 2019; 18, 40. doi:  10.1186/s12943-019-0959-5
[20] Zhang L, Yu DH. Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer, 2019; 1871, 455−68. doi:  10.1016/j.bbcan.2019.04.004
[21] Wei HY, Liang F, Meng G, et al. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells. Sci Rep, 2016; 6, 33402. doi:  10.1038/srep33402
[22] Guo HQ, Feng Y, Yu HY, et al. A novel lncRNA, loc107985872, promotes lung adenocarcinoma progression via the notch1 signaling pathway with exposure to traffic-originated PM2.5 organic extract. Environ Pollut, 2020; 266, 115307. doi:  10.1016/j.envpol.2020.115307
[23] Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002; 2, 442−54. doi:  10.1038/nrc822
[24] Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev, 2012; 92, 689−737. doi:  10.1152/physrev.00028.2011
[25] Dockery DW, Speizer FE, Stram DO, et al. Effects of inhalable particles on respiratory health of children. Am Rev Respir Dis, 1989; 139, 587−94. doi:  10.1164/ajrccm/139.3.587
[26] Zhang LL, Wilson JP, MacDonald B, et al. The changing PM2.5 dynamics of global megacities based on long-term remotely sensed observations. Environ Int, 2020; 142, 105862. doi:  10.1016/j.envint.2020.105862
[27] Yue HF, Yun Y, Gao R, et al. Winter polycyclic aromatic hydrocarbon-bound particulate matter from peri-urban north china promotes lung cancer cell metastasis. Environ Sci Technol, 2015; 49, 14484−93. doi:  10.1021/es506280c
[28] Hamra GB, Guha N, Cohen A, et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect, 2014; 122, 906−11. doi:  10.1289/ehp/1408092
[29] Kulshreshtha A, Ahmad T, Agrawal A, et al. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation. J Allergy Clin Immunol, 2013; 131, 1194−1203.e14. doi:  10.1016/j.jaci.2012.12.1565
[30] Xu Y, Luo F, Liu Y, et al. Exosomal miR-21 derived from arsenite-transformed human bronchial epithelial cells promotes cell proliferation associated with arsenite carcinogenesis. Arch Toxicol, 2015; 89, 1071−82. doi:  10.1007/s00204-014-1291-x
[31] Xu H, Ling M, Xue JC, et al. Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking. Theranostics, 2018; 8, 5419−33. doi:  10.7150/thno.27876
[32] Liu Y, Luo F, Wang BR, et al. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett, 2016; 370, 125−35. doi:  10.1016/j.canlet.2015.10.011
[33] Bai J, Deng JJ, Han ZX, et al. CircRNA_0026344 via exosomal miR-21 regulation of Smad7 is involved in aberrant cross-talk of epithelium-fibroblasts during cigarette smoke-induced pulmonary fibrosis. Toxicol Lett, 2021; 347, 58−66. doi:  10.1016/j.toxlet.2021.04.017
[34] Xu H, Jiao XA, Wu YL, et al. Exosomes derived from PM2.5-treated lung cancer cells promote the growth of lung cancer via the Wnt3a/β-catenin pathway. Oncol Rep, 2019; 41, 1180−8.
[35] Xu ZH, Wang N, Xu Y, et al. Effects of chronic PM2.5 exposure on pulmonary epithelia: transcriptome analysis of mRNA-exosomal miRNA interactions. Toxicol Lett, 2019; 316, 49−59. doi:  10.1016/j.toxlet.2019.09.010
[36] Wang YX, Zhong YJ, Sun KY, et al. Identification of exosome miRNAs in bronchial epithelial cells after PM2.5 chronic exposure. Ecotoxicol Environ Saf, 2021; 215, 112127. doi:  10.1016/j.ecoenv.2021.112127
[37] Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev, 2001; 81, 807−69. doi:  10.1152/physrev.2001.81.2.807
[38] Zhao C, Wang Y, Su ZL, et al. Respiratory exposure to PM2.5 soluble extract disrupts mucosal barrier function and promotes the development of experimental asthma. Sci Total Environ, 2020; 730, 139145. doi:  10.1016/j.scitotenv.2020.139145
[39] Zhou ZX, Liu YH, Duan FK, et al. Transcriptomic analyses of the biological effects of airborne PM2.5 exposure on human bronchial epithelial cells. PLoS One, 2015; 10, e0138267. doi:  10.1371/journal.pone.0138267
[40] Shao C, Huang YY, Fu BJ, et al. Targeting c-Jun in A549 cancer cells exhibits antiangiogenic activity in vitro and in vivo through exosome/miRNA-494-3p/PTEN signal pathway. Front Oncol, 2021; 11, 663183. doi:  10.3389/fonc.2021.663183
[41] Xiao M, Zhang JJ, Chen WJ, et al. M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. J Exp Clin Cancer Res, 2018; 37, 143. doi:  10.1186/s13046-018-0815-2
[42] Liao J, Liu R, Shi YJ, et al. Exosome-shuttling microRNA-21 promotes cell migration and invasion-targeting PDCD4 in esophageal cancer. Int J Oncol, 2016; 48, 2567−79. doi:  10.3892/ijo.2016.3453
[43] Wagner EF, Nebreda ÁR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer, 2009; 9, 537−49. doi:  10.1038/nrc2694
[44] Xu RY, Hu JP. The role of JNK in prostate cancer progression and therapeutic strategies. Biomed Pharmacother, 2020; 121, 109679. doi:  10.1016/j.biopha.2019.109679
[45] Yang YM, Kim SY, Seki E. Inflammation and Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Semin Liver Dis, 2019; 39, 26−42. doi:  10.1055/s-0038-1676806
[46] Antonyak MA, Kenyon LC, Godwin AK, et al. Elevated JNK activation contributes to the pathogenesis of human brain tumors. Oncogene, 2002; 21, 5038−46. doi:  10.1038/sj.onc.1205593
[47] Wu QH, Wu WD, Jacevic V, et al. Selective inhibitors for JNK signalling: a potential targeted therapy in cancer. J Enzyme Inhib Med Chem, 2020; 35, 574−83. doi:  10.1080/14756366.2020.1720013
[48] Zhang DY, Jiang QW, Ge XW, et al. RHOV promotes lung adenocarcinoma cell growth and metastasis through JNK/c-Jun pathway. Int J Biol Sci, 2021; 17, 2622−32. doi:  10.7150/ijbs.59939
[49] Santibañez JF. JNK mediates TGF-β1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes. FEBS Lett, 2006; 580, 5385−91. doi:  10.1016/j.febslet.2006.09.003