[1] Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology, 2018; 67, 358−80. doi:  10.1002/hep.29086
[2] Tong JH, Liu PM, Ji MH, et al. Machine learning can predict total death after radiofrequency ablation in liver cancer patients. Clin Med Insights Oncol, 2021; 15, 11795549211000017.
[3] Chen WQ, Zheng RS, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016; 66, 115−32. doi:  10.3322/caac.21338
[4] Liu CY, Chen KF, Chen PJ. Treatment of liver cancer. Cold Spring Harb Perspect Med, 2015; 5, a021535. doi:  10.1101/cshperspect.a021535
[5] Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet, 2018; 391, 1301−14. doi:  10.1016/S0140-6736(18)30010-2
[6] Chen C, Wang G. Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy. World J Hepatol, 2015; 7, 1964−70. doi:  10.4254/wjh.v7.i15.1964
[7] Liu XF, Qin SK. Immune checkpoint inhibitors in hepatocellular carcinoma: opportunities and challenges. Oncologist, 2019; 24, S3−10. doi:  10.1634/theoncologist.2019-IO-S1-s01
[8] Tung HY, Alemany S, Cohen P. The protein phosphatases involved in cellular regulation. 2. Purification, subunit structure and properties of protein phosphatases-2A0, 2A1, and 2A2 from rabbit skeletal muscle. Eur J Biochem, 1985; 148, 253−63.
[9] Seshacharyulu P, Pandey P, Datta K, et al. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett, 2013; 335, 9−18. doi:  10.1016/j.canlet.2013.02.036
[10] Fowle H, Zhao ZR, Graña X. PP2A holoenzymes, substrate specificity driving cellular functions and deregulation in cancer. Adv Cancer Res, 2019; 144, 55−93.
[11] Zwaenepoel K, Goris J, Erneux C, et al. Protein phosphatase 2A PR130/B'' α: 1 subunit binds to the SH2 domain-containing inositol polyphosphate 5-phosphatase 2 and prevents epidermal growth factor (EGF)-induced EGF receptor degradation sustaining EGF-mediated signaling. FASEB J, 2010; 24, 538−47. doi:  10.1096/fj.09-140228
[12] Creyghton MP, Roël G, Eichhorn PJA, et al. PR130 is a modulator of the Wnt-signaling cascade that counters repression of the antagonist Naked cuticle. Proc Natl Acad Sci U S A, 2006; 103, 5397−402. doi:  10.1073/pnas.0507237103
[13] Creyghton MP, Roël G, Eichhorn PJA, et al. PR72, a novel regulator of Wnt signaling required for Naked cuticle function. Genes Dev, 2005; 19, 376−86. doi:  10.1101/gad.328905
[14] Park S, Scheffler TL, Rossie SS, et al. AMPK activity is regulated by calcium-mediated protein phosphatase 2A activity. Cell Calcium, 2013; 53, 217−23. doi:  10.1016/j.ceca.2012.12.001
[15] Dzulko M, Pons M, Henke A, et al. The PP2A subunit PR130 is a key regulator of cell development and oncogenic transformation. Biochim Biophys Acta Rev Cancer, 2020; 1874, 188453. doi:  10.1016/j.bbcan.2020.188453
[16] Chen HJ, Xu J, Wang PX, et al. Protein phosphatase 2 regulatory subunit B''Alpha silencing inhibits tumor cell proliferation in liver cancer. Cancer Med, 2019; 8, 7741−53. doi:  10.1002/cam4.2620
[17] Chen HJ, Wang PX, Huang LL, et al. Overexpression of protein phosphatase 2 regulatory subunit B''α gene effect on proliferation and invasion of hepatoma cells. Chin J Hepatol, 2019; 27, 872−8. (In Chinese
[18] He JJ, Shang L, Yu QW, et al. High expression of protein phosphatase 2 regulatory subunit B'' alpha predicts poor outcome in hepatocellular carcinoma patients after liver transplantation. World J Gastrointest Oncol, 2021; 13, 716−31. doi:  10.4251/wjgo.v13.i7.716
[19] Zhang Z, Li TE, Chen M, et al. MFN1-dependent alteration of mitochondrial dynamics drives hepatocellular carcinoma metastasis by glucose metabolic reprogramming. Br J Cancer, 2020; 122, 209−20. doi:  10.1038/s41416-019-0658-4
[20] Hasanpourghadi M, Looi CY, Pandurangan AK, et al. Phytometabolites targeting the warburg effect in cancer cells: a mechanistic review. Curr Drug Targets, 2017; 18, 1086−94.
[21] Poff A, Koutnik AP, Egan KM, et al. Targeting the Warburg effect for cancer treatment: Ketogenic diets for management of glioma. Semin Cancer Biol, 2019; 56, 135−48. doi:  10.1016/j.semcancer.2017.12.011
[22] Feng J, Li JJ, Wu LW, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res, 2020; 39, 126. doi:  10.1186/s13046-020-01629-4
[23] Board M, Colquhoun A, Newsholme EA. High Km glucose-phosphorylating (glucokinase) activities in a range of tumor cell lines and inhibition of rates of tumor growth by the specific enzyme inhibitor mannoheptulose. Cancer Res, 1995; 55, 3278−85.
[24] Li GH, Huang JF. Inferring therapeutic targets from heterogeneous data: HKDC1 is a novel potential therapeutic target for cancer. Bioinformatics, 2014; 30, 748−52. doi:  10.1093/bioinformatics/btt606
[25] Smith TA. Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci, 2000; 57, 170−8.
[26] Xu SL, Herschman HR. A tumor agnostic therapeutic strategy for hexokinase 1-null/hexokinase 2-positive cancers. Cancer Res, 2019; 79, 5907−14. doi:  10.1158/0008-5472.CAN-19-1789
[27] Ye J, Xiao X, Han Y, et al. MiR-3662 suppresses cell growth, invasion and glucose metabolism by targeting HK2 in hepatocellular carcinoma cells. Neoplasma, 2020; 67, 773−81. doi:  10.4149/neo_2020_190730N689
[28] Ding ZH, Guo L, Deng ZM, et al. Circ-PRMT5 enhances the proliferation, migration and glycolysis of hepatoma cells by targeting miR-188-5p/HK2 axis. Ann Hepatol, 2020; 19, 269−79. doi:  10.1016/j.aohep.2020.01.002
[29] DeWaal D, Nogueira V, Terry AR, et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat Commun, 2018; 9, 446. doi:  10.1038/s41467-017-02733-4
[30] Imai N, Akimoto H, Oda M, et al. Interactions between cations in modifying the binding of hexokinases I and II to mitochondria. Mol Cell Biochem, 1988; 81, 37−41.
[31] Zhou YT, Liu K, Liu YH, et al. Retraction: MicroRNA-34a inhibit hepatocellular carcinoma progression by repressing hexokinase-1. J Cell Biochem, 2022; 123, 494. doi:  10.1002/jcb.30200
[32] Li S, Zhu KX, Liu L, et al. lncARSR sponges miR-34a-5p to promote colorectal cancer invasion and metastasis via hexokinase-1-mediated glycolysis. Cancer Sci, 2020; 111, 3938−52. doi:  10.1111/cas.14617
[33] He XS, Lin XT, Cai MY, et al. Overexpression of Hexokinase 1 as a poor prognosticator in human colorectal cancer. Tumour Biol, 2016; 37, 3887−95. doi:  10.1007/s13277-015-4255-8
[34] Gao YS, Xu DY, Yu GZ, et al. Overexpression of metabolic markers HK1 and PKM2 contributes to lymphatic metastasis and adverse prognosis in Chinese gastric cancer. Int J Clin Exp Pathol, 2015; 8, 9264−71.
[35] Li YQ, Tian HN, Luo HG, et al. Prognostic significance and related mechanisms of hexokinase 1 in ovarian cancer. Onco Targets Ther, 2020; 13, 11583−94. doi:  10.2147/OTT.S270688
[36] Amendola CR, Mahaffey JP, Parker SJ, et al. KRAS4A directly regulates hexokinase 1. Nature, 2019; 576, 482−6. doi:  10.1038/s41586-019-1832-9
[37] Qiu ZX, Li H, Zhang ZT, et al. A pharmacogenomic landscape in human liver cancers. Cancer Cell, 2019; 36, 179−93.e11. doi:  10.1016/j.ccell.2019.07.001
[38] Yang DQ, Freund DM, Harris BRE, et al. Measuring relative utilization of aerobic glycolysis in breast cancer cells by positional isotopic discrimination. FEBS Lett, 2016; 590, 3179−87. doi:  10.1002/1873-3468.12360
[39] Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol, 2019; 95, 912−9. doi:  10.1080/09553002.2019.1589653
[40] Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009; 324, 1029−33. doi:  10.1126/science.1160809
[41] Ganapathy-Kanniappan S. Linking tumor glycolysis and immune evasion in cancer: Emerging concepts and therapeutic opportunities. Biochim Biophys Acta Rev Cancer, 2017; 1868, 212−20. doi:  10.1016/j.bbcan.2017.04.002
[42] Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer, 2004; 4, 891−9. doi:  10.1038/nrc1478
[43] Lardner A. The effects of extracellular pH on immune function. J Leukoc Biol, 2001; 69, 522−30.