[1] GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020; 396, 1204−22. doi:  10.1016/S0140-6736(20)30925-9
[2] Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol, 2020; 76, 2982−3021. doi:  10.1016/j.jacc.2020.11.010
[3] Lippi G, Sanchis-Gomar F, Cervellin G. Global epidemiology of atrial fibrillation: an increasing epidemic and public health challenge. Int J Stroke, 2021; 16, 217−21. doi:  10.1177/1747493019897870
[4] Avan A, Sany SBT, Ghayour-Mobarhan M, et al. Serum C-reactive protein in the prediction of cardiovascular diseases: overview of the latest clinical studies and public health practice. J Cell Physiol, 2018; 233, 8508−25. doi:  10.1002/jcp.26791
[5] Dong Y, Wang X, Zhang LF, et al. High-sensitivity C reactive protein and risk of cardiovascular disease in China-CVD study. J Epidemiol Community Health, 2019; 73, 188−92. doi:  10.1136/jech-2018-211433
[6] Sung KC, Ryu S, Chang Y, et al. C-reactive protein and risk of cardiovascular and all-cause mortality in 268 803 East Asians. Eur Heart J, 2014; 35, 1809−16. doi:  10.1093/eurheartj/ehu059
[7] Buckley DI, Fu RW, Freeman M, et al. C-reactive protein as a risk factor for coronary heart disease: a systematic review and meta-analyses for the U. S. Preventive Services Task Force. Ann Intern Med, 2009; 151, 483−95.
[8] Wang GL, Zhang R, Zhou YT, et al. Combined effects of A body shape index and serum C-reactive protein on ischemic stroke incidence among Mongolians in China. Biomed Environ Sci, 2019; 32, 169−76.
[9] Kim HY, Lee J, Kim J. Association between dietary inflammatory index and metabolic syndrome in the general Korean population. Nutrients, 2018; 10, 648. doi:  10.3390/nu10050648
[10] Ren ZX, Zhao A, Wang Y, et al. Association between dietary inflammatory index, C-reactive protein and metabolic syndrome: a cross-sectional study. Nutrients, 2018; 10, 831. doi:  10.3390/nu10070831
[11] Tang YB, Huo JS, Huang J, et al. Distribution of high-sensitivity C-reactive protein status in an urban population in China. Biomed Environ Sci, 2020; 33, 396−402.
[12] Smith GD, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease?. Int J Epidemiol, 2003; 32, 1−22. doi:  10.1093/ije/dyg070
[13] Wensley F, Gao P, Burgess S, et al. Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ, 2011; 342, d548. doi:  10.1136/bmj.d548
[14] Marott SCW, Nordestgaard BG, Zacho J, et al. Does elevated C-reactive protein increase atrial fibrillation risk?: A mendelian randomization of 47, 000 individuals from the general population. J Am Coll Cardiol, 2010; 56, 789−95. doi:  10.1016/j.jacc.2010.02.066
[15] Wang BY, Zhang XY, Liu D, et al. The role of C-reactive protein and fibrinogen in the development of intracerebral hemorrhage: a Mendelian randomization study in European population. Front Genet, 2021; 12, 608714. doi:  10.3389/fgene.2021.608714
[16] Zhuang Q, Shen C, Chen YC, et al. Association of high sensitive C-reactive protein with coronary heart disease: a Mendelian randomization study. BMC Med Genet, 2019; 20, 170. doi:  10.1186/s12881-019-0910-z
[17] Zhang X, Wang A, Zhang J, et al. Association of plasma C-reactive protein with ischaemic stroke: a Mendelian randomization study. Eur J Neurol, 2020; 27, 565−71. doi:  10.1111/ene.14113
[18] Low SK, Takahashi A, Ebana Y, et al. Identification of six new genetic loci associated with atrial fibrillation in the Japanese population. Nat Genet, 2017; 49, 953−58. doi:  10.1038/ng.3842
[19] Ishigaki K, Akiyama M, Kanai M, et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat Genet, 2020; 52, 669−79. doi:  10.1038/s41588-020-0640-3
[20] Kanai M, Akiyama M, Takahashi A, et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat Genet, 2018; 50, 390−400. doi:  10.1038/s41588-018-0047-6
[21] Baum CF, Schaffer ME, Stillman S. Enhanced routines for instrumental variables/generalized method of moments estimation and testing. Stata J:Promot Commun Stat Stata, 2007; 7, 465−506. doi:  10.1177/1536867X0800700402
[22] Lawlor DA, Harbord RM, Sterne JAC, et al. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med, 2008; 27, 1133−63. doi:  10.1002/sim.3034
[23] Cao FF, Wang XF, Lu M, et al. Glucokinase regulatory protein (GCKR) gene rs4425043 polymorphism is associated with overweight and obesity in Chinese women. Lipids, 2011; 46, 357−63. doi:  10.1007/s11745-011-3533-5
[24] Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol, 2016; 40, 597−608. doi:  10.1002/gepi.21998
[25] Minelli C, Fabiola DGM, Van Der Plaat DA, et al. The use of two-sample methods for Mendelian randomization analyses on single large datasets. Int J Epidemiol, 2021.
[26] Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol, 2013; 37, 658−65. doi:  10.1002/gepi.21758
[27] Wu PF, Li RZ, Zhang W, et al. Polycystic ovary syndrome is not associated with offspring birth weight: a Mendelian randomization study. Biomed Environ Sci, 2021; 34, 170−74.
[28] Bowden J, Smith GD, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol, 2015; 44, 512−25. doi:  10.1093/ije/dyv080
[29] Brion MJA, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol, 2013; 42, 1497−501. doi:  10.1093/ije/dyt179
[30] Kardys I, Knetsch AM, Bleumink GS, et al. C-reactive protein and risk of heart failure. The Rotterdam study. Am Heart J, 2006; 152, 514−20. doi:  10.1016/j.ahj.2006.02.023
[31] Smith JG, Newton-Cheh C, Almgren P, et al. Assessment of conventional cardiovascular risk factors and multiple biomarkers for the prediction of incident heart failure and atrial fibrillation. J Am Coll Cardiol, 2010; 56, 1712−19. doi:  10.1016/j.jacc.2010.05.049
[32] Williams ES, Shah SJ, Ali S, et al. C-reactive protein, diastolic dysfunction, and risk of heart failure in patients with coronary disease: heart and soul study. Eur J Heart Fail, 2008; 10, 63−9. doi:  10.1016/j.ejheart.2007.11.003
[33] Kalogeropoulos AP, Tang WHW, Hsu A, et al. High-sensitivity C-reactive protein in acute heart failure: insights from the ASCEND-HF trial. J Card Fail, 2014; 20, 319−26. doi:  10.1016/j.cardfail.2014.02.002
[34] Venugopal SK, Devaraj S, Jialal I. Effect of C-reactive protein on vascular cells: evidence for a proinflammatory, proatherogenic role. Curr Opin Nephrol Hypertens, 2005; 14, 33−7. doi:  10.1097/00041552-200501000-00006
[35] Markozannes G, Koutsioumpa C, Cividini S, et al. Global assessment of C-reactive protein and health-related outcomes: an umbrella review of evidence from observational studies and Mendelian randomization studies. Eur J Epidemiol, 2021; 36, 11−36. doi:  10.1007/s10654-020-00681-w
[36] Zhou YJ, Han W, Gong DD, et al. Hs-CRP in stroke: a meta-analysis. Clin Chim Acta, 2016; 453, 21−7. doi:  10.1016/j.cca.2015.11.027
[37] The Emerging Risk Factors Collaborat. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet, 2010; 375, 132−40. doi:  10.1016/S0140-6736(09)61717-7
[38] Badimon L, Peña E, Arderiu G, et al. C-reactive protein in atherothrombosis and angiogenesis. Front Immunol, 2018; 9, 430. doi:  10.3389/fimmu.2018.00430
[39] Lin JX, Wang YL, Wang YJ, et al. Inflammatory biomarkers and risk of ischemic stroke and subtypes: a 2-sample Mendelian randomization study. Neurol Res, 2020; 42, 118−25. doi:  10.1080/01616412.2019.1710404
[40] Du ML, Garcia JGN, Christie JD, et al. Integrative omics provide biological and clinical insights into acute respiratory distress syndrome. Intensive Care Med, 2021; 47, 761−71. doi:  10.1007/s00134-021-06410-5
[41] Elkind MSV, Luna JM, Moon YP, et al. High-sensitivity C-reactive protein predicts mortality but not stroke: the Northern Manhattan Study. Neurology, 2009; 73, 1300−7. doi:  10.1212/WNL.0b013e3181bd10bc
[42] Luna JM, Moon YP, Liu KM, et al. High-sensitivity C-reactive protein and interleukin-6–dominant inflammation and ischemic stroke risk: the northern Manhattan study. Stroke, 2014; 45, 979−87. doi:  10.1161/STROKEAHA.113.002289
[43] Boehme AK, Esenwa C, Elkind MSV. Stroke risk factors, genetics, and prevention. Circ Res, 2017; 120, 472−95. doi:  10.1161/CIRCRESAHA.116.308398
[44] Staerk L, Sherer JA, Ko D, et al. Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes. Circ Res, 2017; 120, 1501−17. doi:  10.1161/CIRCRESAHA.117.309732
[45] Watanabe T, Takeishi Y, Hirono O, et al. C-reactive protein elevation predicts the occurrence of atrial structural remodeling in patients with paroxysmal atrial fibrillation. Heart Vessels, 2005; 20, 45−9. doi:  10.1007/s00380-004-0800-x
[46] Psychari SN, Apostolou TS, Sinos L, et al. Relation of elevated C-reactive protein and interleukin-6 levels to left atrial size and duration of episodes in patients with atrial fibrillation. Am J Cardiol, 2005; 95, 764−67. doi:  10.1016/j.amjcard.2004.11.032
[47] Ishii Y, Schuessler RB, Gaynor SL, et al. Inflammation of atrium after cardiac surgery is associated with inhomogeneity of atrial conduction and atrial fibrillation. Circulation, 2005; 111, 2881−8. doi:  10.1161/CIRCULATIONAHA.104.475194
[48] Iwasaki YK, Nishida K, Kato T, et al. Atrial fibrillation pathophysiology: implications for management. Circulation, 2011; 124, 2264−74. doi:  10.1161/CIRCULATIONAHA.111.019893
[49] Yoshikawa T, Hata J, Sakata S, et al. Serum high-sensitivity C-reactive protein levels and the development of atrial fibrillation in a general Japanese population- the Hisayama study. Circ J, 2021; 85, 1365−72. doi:  10.1253/circj.CJ-20-0751
[50] Tanaka M, Imano H, Kubota Y, et al. Serum high-sensitivity C-reactive protein levels and the risk of atrial fibrillation in Japanese population: the circulatory risk in communities study. J Atheroscler Thromb, 2021; 28, 194−202. doi:  10.5551/jat.54064
[51] Yuan S, Lin A, He QQ, et al. Circulating interleukins in relation to coronary artery disease, atrial fibrillation and ischemic stroke and its subtypes: a two-sample Mendelian randomization study. Int J Cardiol, 2020; 313, 99−104. doi:  10.1016/j.ijcard.2020.03.053