[1] Perry RD, Fetherston JD. Yersinia pestis--etiologic agent of plague. Clin Microbiol Rev, 1997; 10, 35−66. doi:  10.1128/CMR.10.1.35
[2] Chouikha I, Hinnebusch BJ. Yersinia--flea interactions and the evolution of the arthropod-borne transmission route of plague. Curr Opin Microbiol, 2012; 15, 239−46. doi:  10.1016/j.mib.2012.02.003
[3] Darby C. Uniquely insidious: Yersinia pestis biofilms. Trends Microbiol, 2008; 16, 158−64. doi:  10.1016/j.tim.2008.01.005
[4] Zhou D, Yang R. Formation and regulation of Yersinia biofilms. Protein Cell, 2011; 2, 173−9. doi:  10.1007/s13238-011-1024-3
[5] Abu Khweek A, Fetherston JD, Perry RD. Analysis of HmsH and its role in plague biofilm formation. Microbiology, 2010; 156, 1424−38. doi:  10.1099/mic.0.036640-0
[6] Bobrov AG, Kirillina O, Forman S, et al. Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environ Microbiol, 2008; 10, 1419−32. doi:  10.1111/j.1462-2920.2007.01554.x
[7] Fang N, Qu S, Yang H, et al. HmsB enhances biofilm formation in Yersinia pestis. Front Microbiol, 2014; 5, 685.
[8] Hinnebusch BJ, Perry RD, Schwan TG. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science, 1996; 273, 367−70. doi:  10.1126/science.273.5273.367
[9] Liu Z, Gao X, Wang H, et al. Plasmid pPCP1-derived sRNA HmsA promotes biofilm formation of Yersinia pestis. BMC Microbiol, 2016; 16, 176. doi:  10.1186/s12866-016-0793-5
[10] Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol, 2017; 15, 271−84. doi:  10.1038/nrmicro.2016.190
[11] Valentini M, Filloux A. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas aeruginosa and Other Bacteria. J Biol Chem, 2016; 291, 12547−55. doi:  10.1074/jbc.R115.711507
[12] Sun YC, Koumoutsi A, Jarrett C, et al. Differential control of Yersinia pestis biofilm formation in vitro and in the flea vector by two c-di-GMP diguanylate cyclases. PLoS One, 2011; 6, e19267. doi:  10.1371/journal.pone.0019267
[13] Bobrov AG, Kirillina O, Ryjenkov DA, et al. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol, 2011; 79, 533−51. doi:  10.1111/j.1365-2958.2010.07470.x
[14] Bobrov AG, Kirillina O, Perry RD. The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett, 2005; 247, 123−30. doi:  10.1016/j.femsle.2005.04.036
[15] Liu L, Fang H, Yang H, et al. CRP is an activator of Yersinia pestis biofilm formation that operates via a mechanism involving gmhA and waaAE-coaD. Front Microbiol, 2016; 7, 295.
[16] Willias SP, Chauhan S, Lo CC, et al. CRP-mediated carbon catabolite regulation of Yersinia pestis biofilm formation is enhanced by the carbon storage regulator protein, CsrA. PLoS One, 2015; 10, e0135481. doi:  10.1371/journal.pone.0135481
[17] Liu L, Fang H, Yang H, et al. Reciprocal regulation of Yersinia pestis biofilm formation and virulence by RovM and RovA. Open Biol, 2016; 6.
[18] Tam C, Demke O, Hermanas T, et al. YfbA, a Yersinia pestis regulator required for colonization and biofilm formation in the gut of cat fleas. J Bacteriol, 2014; 196, 1165−73. doi:  10.1128/JB.01187-13
[19] Fang H, Liu L, Zhang Y, et al. BfvR, an AraC-family regulator, controls biofilm formation and pH6 antigen production in opposite ways in Yersinia pestis biovar microtus. Front Cell Infect Microbiol, 2018; 8, 347. doi:  10.3389/fcimb.2018.00347
[20] Fang N, Yang H, Fang H, et al. RcsAB is a major repressor of Yersinia biofilm development through directly acting on hmsCDE, hmsT, and hmsHFRS. Sci Rep, 2015; 5, 9566. doi:  10.1038/srep09566
[21] Sun F, Gao H, Zhang Y, et al. Fur is a repressor of biofilm formation in Yersinia pestis. PLoS One, 2012; 7, e52392. doi:  10.1371/journal.pone.0052392
[22] Han Y, Liu L, Fang N, et al. Regulation of pathogenicity by noncoding RNAs in bacteria. Future Microbiol, 2013; 8, 579−91. doi:  10.2217/fmb.13.20
[23] Qu Y, Bi L, Ji X, et al. Identification by cDNA cloning of abundant sRNAs in a human-avirulent Yersinia pestis strain grown under five different growth conditions. Future Microbiol, 2012; 7, 535−47. doi:  10.2217/fmb.12.13
[24] Beauregard A, Smith EA, Petrone BL, et al. Identification and characterization of small RNAs in Yersinia pestis. RNA Biol, 2013; 10, 397−405. doi:  10.4161/rna.23590
[25] Yan Y, Su S, Meng X, et al. Determination of sRNA expressions by RNA-seq in Yersinia pestis grown in vitro and during infection. PLoS One, 2013; 8, e74495. doi:  10.1371/journal.pone.0074495
[26] Schiano CA, Koo JT, Schipma MJ, et al. Genome-wide analysis of small RNAs expressed by Yersinia pestis identifies a regulator of the Yop-Ysc type III secretion system. J Bacteriol, 2014; 196, 1659−70. doi:  10.1128/JB.01456-13
[27] Porcheron G, Dozois CM. Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. Vet Microbiol, 2015; 179, 2−14. doi:  10.1016/j.vetmic.2015.03.024
[28] Perez-Reytor D, Plaza N, Espejo RT, et al. Role of non-coding regulatory RNA in the virulence of human pathogenic Vibrios. Front Microbiol, 2016; 7, 2160.
[29] Deng Z, Meng X, Su S, et al. Two sRNA RyhB homologs from Yersinia pestis biovar microtus expressed in vivo have differential Hfq-dependent stability. Res Microbiol, 2012; 163, 413−8. doi:  10.1016/j.resmic.2012.05.006
[30] Deng Z, Liu Z, Bi Y, et al. Rapid degradation of Hfq-free RyhB in Yersinia pestis by PNPase independent of putative ribonucleolytic complexes. Biomed Res Int, 2014; 2014, 798918.
[31] Zhou D, Tong Z, Song Y, et al. Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus. J Bacteriol, 2004; 186, 5147−52. doi:  10.1128/JB.186.15.5147-5152.2004
[32] Wang R, Liu R, Li Z, et al. Two-step PCR mediated Red recombination technique for rapid deletion of Yersinia pestis sRNA and large fragment chromosome. Acta Microbiologica Sinica, 2017; 57, 1126−37.
[33] Zhang Y, Hu L, Qiu Y, et al. QsvR integrates into quorum sensing circuit to control Vibrio parahaemolyticus virulence. Environ Microbiol, 2019; 21, 1054−67. doi:  10.1111/1462-2920.14524
[34] Pfeiffer V, Papenfort K, Lucchini S, et al. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol, 2009; 16, 840−6. doi:  10.1038/nsmb.1631
[35] Simm R, Fetherston JD, Kader A, et al. Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol, 2005; 187, 6816−23. doi:  10.1128/JB.187.19.6816-6823.2005
[36] Masse E, Gottesman S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA, 2002; 99, 4620−5. doi:  10.1073/pnas.032066599
[37] Huang SH, Wang CK, Peng HL, et al. Role of the small RNA RyhB in the Fur regulon in mediating the capsular polysaccharide biosynthesis and iron acquisition systems in Klebsiella pneumoniae. BMC Microbiol, 2012; 12, 148. doi:  10.1186/1471-2180-12-148
[38] Vecerek B, Moll I, Blasi U. Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J, 2007; 26, 965−75. doi:  10.1038/sj.emboj.7601553
[39] Mey AR, Craig SA, Payne SM. Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect Immun, 2005; 73, 5706−19. doi:  10.1128/IAI.73.9.5706-5719.2005