[1] Doan T, Wilson MR, Crawford ED, et al. Illuminating uveitis: metagenomic deep sequencing identifies common and rare pathogens. Genome Med, 2016; 8, 90. doi:  10.1186/s13073-016-0344-6
[2] Jones J, Hunter D. Qualitative research: consensus methods for medical and health services research. BMJ, 1995; 311, 376−80. doi:  10.1136/bmj.311.7001.376
[3] Pan XY, Wang M, Xu YD, et al. Application of metagenomic next-generation sequencing in the diagnosis of infectious keratitis. J Ophthalmol, 2024; 2024, 9911979.
[4] Zhu JF, Xia HH, Tang RQ, et al. Metagenomic next-generation sequencing detects pathogens in endophthalmitis patients. Retina, 2022; 42, 992−1000. doi:  10.1097/IAE.0000000000003406
[5] Qian ZY, Xia H, Zhou JM, et al. Performance of metagenomic next-generation sequencing of cell-free DNA from vitreous and aqueous humor for diagnoses of intraocular infections. J Infect Dis, 2024; 229, 252−61. doi:  10.1093/infdis/jiad363
[6] Wu J, Lu AD, Zhang LP, et al. Study of clinical outcome and prognosis in pediatric core binding factor-acute myeloid leukemia. Chin J Hematol, 2019; 40, 52−7. (In Chinese)
[7] Wang ZJ, Zhou M, Cao WJ, et al. Evaluation of the Goldmann-Witmer coefficient in the immunological diagnosis of ocular toxocariasis. Acta Trop, 2016; 158, 20−3. doi:  10.1016/j.actatropica.2016.02.013
[8] Redd TK, Lalitha P, Prajna NV, et al. Impact of sample collection order on the diagnostic performance of metagenomic deep sequencing for infectious keratitis. Cornea, 2022; 41, 39−44. doi:  10.1097/ICO.0000000000002766
[9] Li YX, Qian ZY, Chen HG, et al. The clinical value of β-D-glucan testing and next-generation metagenomic sequencing for the diagnosis of fungal endophthalmitis. Retina, 2024; 44, 1209−16. doi:  10.1097/IAE.0000000000004073
[10] Institute CaLS. Nucleic acid sequencing methods in diagnostic laboratory medicine; approved guideline. 2nd ed. MM09-A2. Institute CaLS. 2014.
[11] Li PC, Qian ZY, Tao Y. Application of metagenomic next-generation sequencing in the diagnosis of Bartonella neuroretinitis: a case report and literature review. J Ophthal Inflamm Infect, 2024; 14, 17. doi:  10.1186/s12348-024-00387-0
[12] Xi HY, Zhang LS, Xu B, et al. Metagenomic next-generation sequencing to investigate infectious endophthalmitis of brucella: a case report. Front Med, 2022; 9, 847143. doi:  10.3389/fmed.2022.847143
[13] Kirstahler P, Bjerrum SS, Friis-Møller A, et al. Genomics-based identification of microorganisms in human ocular body fluid. Sci Rep, 2018; 8, 4126. doi:  10.1038/s41598-018-22416-4
[14] Qian ZY, Zhang YK, Wang L, et al. Application of metagenomic next-generation sequencing in suspected intraocular infections. Eur J Ophthalmol, 2023; 33, 391−7. doi:  10.1177/11206721221107311
[15] Han DS, Diao ZL, Lai HY, et al. Multilaboratory assessment of metagenomic next-generation sequencing for unbiased microbe detection. J Adv Res, 2022; 38, 213−22. doi:  10.1016/j.jare.2021.09.011
[16] Blauwkamp TA, Thair S, Rosen MJ, et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat Microbiol, 2019; 4, 663−74. doi:  10.1038/s41564-018-0349-6
[17] Diao ZL, Lai HY, Han DS, et al. Validation of a metagenomic next-generation sequencing assay for lower respiratory pathogen detection. Microbiol Spectr, 2023; 11, e0381222. doi:  10.1128/spectrum.03812-22
[18] Editorial Board of Chinese Journal of Infectious Diseases. Clinical practice expert consensus for the application of metagenomic next generation sequencing. Chin J Infect Dis, 2020; 38, 681−9. (In Chinese)
[19] Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet, 2019; 20, 341−55. doi:  10.1038/s41576-019-0113-7
[20] Langelier C, Kalantar KL, Moazed F, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc Natl Acad Sci USA, 2018; 115, E12353−62.