[1] Cullinan P, Reid P. Pneumoconiosis. Prim Care Respir J, 2013; 22, 249−52. doi:  10.4104/pcrj.2013.00055
[2] AIOH. Respirable crystalline silica and occupational health issues. Tullamarine, Vic.: Australian Institute of Occupational Hygienists, 2009.
[3] Hoy RF, Chambers DC. Silica-related diseases in the modern world. Allergy, 2020, doi:  10.1111/all.14202.
[4] Fadeel B. Hide and Seek: nanomaterial interactions with the immune system. Front Immunol, 2019; 10, 133. doi:  10.3389/fimmu.2019.00133
[5] Rose C, Heinzerling A, Patel K, et al. Severe silicosis in engineered stone fabrication workers - California, Colorado, Texas, and Washington, 2017-2019. MMWR Morb Mortal Wkly Rep, 2019; 68, 813−8. doi:  10.15585/mmwr.mm6838a1
[6] GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018; 392, 1789−858. doi:  10.1016/S0140-6736(18)32279-7
[7] Occupational Lung Disease Group of Labor Hygiene and Occupational Diseases Branch of Chinese Preventive Medicine Association. Consensus of Chinese experts on pneumoconiosis treatment (2018). J Lab Med, 2018; 35, 677−89. (In Chinese)
[8] Mao WJ, Zhang YM, Chen JY, et al. Comparing the therapeutic effect of lung transplantation with the therapeutic effect of whole lung lavage for the patients with end-stage pneumoconiosis. Chin J Ind Hyg Occup Dis, 2011; 29, 746−50. (In Chinese)
[9] Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat Rev Genet, 2018; 19, 299−310. doi:  10.1038/nrg.2018.4
[10] Christiani DC, Mehta AJ, Yu CL. Genetic susceptibility to occupational exposures. Occup Environ Med, 2008; 65, 430−6. doi:  10.1136/oem.2007.033977
[11] Ragoussis J. Genotyping technologies for genetic research. Annu Rev Genomics Hum Genet, 2009; 10, 117−33. doi:  10.1146/annurev-genom-082908-150116
[12] Chu MJ, Ji XM, Chen WH, et al. A genome-wide association study identifies susceptibility loci of silica-related pneumoconiosis in Han Chinese. Hum Mol Genet, 2014; 23, 6385−94. doi:  10.1093/hmg/ddu333
[13] Chu MJ, Wu SS, Wang W, et al. Functional variant of the carboxypeptidase M (CPM) gene may affect silica-related pneumoconiosis susceptibility by its expression: a multistage case-control study. Occup Environ Med, 2019; 76, 169−74. doi:  10.1136/oemed-2018-105545
[14] Wang T, Yang JJ, Ji XM, et al. Pathway analysis for a genome-wide association study of pneumoconiosis. Toxicol Lett, 2015; 232, 284−92. doi:  10.1016/j.toxlet.2014.10.028
[15] Wang T, Li Y, Zhu M, et al. Association analysis identifies new risk loci for coal workers’ pneumoconiosis in Han Chinese Men. Toxicol Sci, 2018; 163, 206−13. doi:  10.1093/toxsci/kfy017
[16] Guo L, Ji XM, Yang S, et al. Genome-wide analysis of aberrantly expressed circulating miRNAs in patients with coal workers' pneumoconiosis. Mol Biol Rep, 2013; 40, 3739−47. doi:  10.1007/s11033-012-2450-x
[17] Zhang Y, Wang FX, Zhou DZ, et al. Genome-wide analysis of aberrantly expressed microRNAs in bronchoalveolar lavage fluid from patients with silicosis. Ind Health, 2016; 54, 361−9. doi:  10.2486/indhealth.2015-0170
[18] Zhang N, Liu KL, Wang K, et al. Dust induces lung fibrosis through dysregulated DNA methylation. Environ Toxicol, 2019; 34, 728−41. doi:  10.1002/tox.22739
[19] Seidel C, Kirsch A, Fontana C, et al. Epigenetic changes in the early stage of silica-induced cell transformation. Nanotoxicology, 2017; 11, 923−35. doi:  10.1080/17435390.2017.1382599
[20] Wang XJ, Liu Y, Xu H, et al. Acetylated α-tubulin regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) exerts the anti-fibrotic effect in rat lung fibrosis Induced by Silica. Sci Rep, 2016; 6, 32257. doi:  10.1038/srep32257
[21] Li CY, Wang ZK, Zhang JJ, et al. Crosstalk of mRNA, miRNA, lncRNA, and circRNA and their regulatory pattern in pulmonary fibrosis. Mol Ther Nucleic Acids, 2019; 18, 204−18. doi:  10.1016/j.omtn.2019.08.018
[22] Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet, 2012; 13, 97−109. doi:  10.1038/nrg3142
[23] Zhang M, Wang YR, Yang DY, et al. Effect of smoking on microRNAs expression in pneumoconiosis patients. Chin J Ind Hyg Occup Dis, 2014; 32, 686−8. (In Chinese)
[24] Yang Z, Li Q, Yao SQ, et al. Down-Regulation of miR-19a as a biomarker for early detection of silicosis. Anat Rec, 2016; 299, 1300−7. doi:  10.1002/ar.23381
[25] Huang RX, Yu T, Li Y, et al. Upregulated has-miR-4516 as a potential biomarker for early diagnosis of dust-induced pulmonary fibrosis in patients with pneumoconiosis. Toxicol Res, 2018; 7, 415−22. doi:  10.1039/C8TX00031J
[26] Wang JY, Geng X, Jia Q, et al. Expression changes of miRNA-29b-3p and miRNA-34c-3p in lung tissue of rats exposed to silica and A549 cells. Chin J Ind Hyg Occup Dis, 2019; 37, 110−5. (In Chinese)
[27] Yang H, Li WC, Zhang YJ, et al. Regulatory role of miR-18a to CCN2 by TGF-β1 signaling pathway in pulmonary injury induced by nano-SiO2. Environ Sci Pollut Res, 2018; 25, 867−76. doi:  10.1007/s11356-017-0344-0
[28] Zhang Y, Zhou DZ, Wang FX, et al. Bronchoalveolar lavage fluid microRNA-146a: a biomarker of disease severity and pulmonary function in patients with silicosis. J Occup Environ Med, 2016; 58, e177−82. doi:  10.1097/JOM.0000000000000719
[29] Liu YT, Zeng Q, Li SX, et al. The expression of serum miRNAs in pneumoconiosis complicated with pulmonary tuberculosis patients. Chin J Ind Hyg Occup Dis, 2016; 34, 525−7. (In Chinese)
[30] Ji XM, Wu BQ, Fan JJ, et al. The Anti-fibrotic effects and mechanisms of MicroRNA-486-5p in pulmonary fibrosis. Sci Rep, 2015; 5, 14131. doi:  10.1038/srep14131
[31] Wu QY, Han L, Yan WW, et al. miR-489 inhibits silica-induced pulmonary fibrosis by targeting MyD88 and Smad3 and is negatively regulated by lncRNA CHRF. Sci Rep, 2016; 6, 30921. doi:  10.1038/srep30921
[32] Cui HC, Banerjee S, Xie N, et al. MicroRNA-27a-3p Is a negative regulator of lung fibrosis by targeting Myofibroblast differentiation. Am J Respir Cell Mol Biol, 2016; 54, 843−52. doi:  10.1165/rcmb.2015-0205OC
[33] Gao XM, Xu H, Xu DJ, et al. MiR-411-3p alleviates Silica-induced pulmonary fibrosis by regulating Smurf2/TGF-β signaling. Exp Cell Res, 2020; 388, 111878. doi:  10.1016/j.yexcr.2020.111878
[34] Yan WW, Wu QY, Yao WX, et al. MiR-503 modulates epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by targeting PI3K p85 and is sponged by lncRNA MALAT1. Sci Rep, 2017; 7, 11313. doi:  10.1038/s41598-017-11904-8
[35] Yao WX, Li Y, Han L, et al. The CDR1as/miR-7/TGFBR2 axis modulates EMT in silica-induced pulmonary fibrosis. Toxicol Sci, 2018; 166, 465−78. doi:  10.1093/toxsci/kfy221
[36] Lian XM, Chen XW, Sun JP, et al. MicroRNA-29b inhibits supernatants from silica-treated macrophages from inducing extracellular matrix synthesis in lung fibroblasts. Toxicol Res, 2017; 6, 878−88. doi:  10.1039/C7TX00126F
[37] Sun JP, Li QY, Lian XM, et al. MicroRNA-29b mediates lung Mesenchymal-epithelial transition and prevents lung fibrosis in the silicosis model. Mol Ther Nucleic Acids, 2019; 14, 20−31. doi:  10.1016/j.omtn.2018.10.017
[38] Kim MS, Baek AR, Lee JH, et al. IL-37 attenuates lung fibrosis by inducing autophagy and regulating TGF-β1 production in mice. J Immunol, 2019; 203, 2265−75. doi:  10.4049/jimmunol.1801515
[39] Li XL, Yu T, Shan HT, et al. lncRNA PFAL promotes lung fibrosis through CTGF by competitively binding miR-18a. FASEB J, 2018; 32, 5285−97. doi:  10.1096/fj.201800055R
[40] Souma K, Shichino S, Hashimoto S, et al. Lung fibroblasts express a miR-19a-19b-20a sub-cluster to suppress TGF-β-associated fibroblast activation in murine pulmonary fibrosis. Sci Rep, 2018; 8, 16642. doi:  10.1038/s41598-018-34839-0
[41] Wang FX, Zhang Q, Zhou DL, et al. Altered microRNAs expression profiling in experimental silicosis rats. J Toxicol Sci, 2012; 37, 1207−15. doi:  10.2131/jts.37.1207
[42] Zhang Y, Wang FX, Lan YJ, et al. Roles of microRNA-146a and microRNA-181b in regulating the secretion of tumor necrosis factor-α and interleukin-1β in silicon dioxide-induced NR8383 rat macrophages. Mol Med Rep, 2015; 12, 5587−93. doi:  10.3892/mmr.2015.4083
[43] Han RH, Ji XM, Rong R, et al. MiR-449a regulates autophagy to inhibit silica-induced pulmonary fibrosis through targeting Bcl2. J Mol Med, 2016; 94, 1267−79. doi:  10.1007/s00109-016-1441-0
[44] Xu TT, Yan WW, Wu QY, et al. MiR-326 inhibits inflammation and promotes autophagy in silica-induced pulmonary fibrosis through targeting TNFSF14 and PTBP1. Chem Res Toxicol, 2019; 32, 2192−203. doi:  10.1021/acs.chemrestox.9b00194
[45] Yuan JL, Li P, Pan HH, et al. miR-542-5p attenuates fibroblast activation by targeting integrin α6 in silica-induced pulmonary fibrosis. Int J Mol Sci, 2018; 19, 3717. doi:  10.3390/ijms19123717
[46] Wang X, Xu K, Yang XY, et al. Upregulated miR-29c suppresses silica-induced lung fibrosis through the Wnt/β-catenin pathway in mice. Hum Exp Toxicol, 2018; 37, 944−52. doi:  10.1177/0960327117741750
[47] Rong Y, Zhou M, Cui XQ, et al. MiRNA-regulated changes in extracellular matrix protein levels associated with a severe decline in lung function induced by silica dust. J Occup Environ Med, 2018; 60, 316−21. doi:  10.1097/JOM.0000000000001268
[48] Wu QY, Xu TT, Liu Y, et al. miR-1224-5p mediates mitochondrial damage to affect silica-induced pulmonary fibrosis by targeting BECN1. Int J Mol Sci, 2017; 18, 2357. doi:  10.3390/ijms18112357
[49] Chen YY, Xu DJ, Yao JX, et al. Inhibition of miR-155-5p exerts anti-fibrotic effects in Silicotic mice by regulating Meprin α. Mol Ther Nucleic Acids, 2020; 19, 350−60. doi:  10.1016/j.omtn.2019.11.018
[50] Wang J, Zhu MC, Pan J, et al. Circular RNAs: a rising star in respiratory diseases. Respir Res, 2019; 20, 3. doi:  10.1186/s12931-018-0962-1
[51] Sai LL, Yu GC, Bo CX, et al. Profiling long non-coding RNA changes in silica-induced pulmonary fibrosis in rat. Toxicol Lett, 2019; 310, 7−13. doi:  10.1016/j.toxlet.2019.04.003
[52] Yang XY, Wang J, Zhou ZW, et al. Silica-induced initiation of circular ZC3H4RNA/ZC3H4 pathway promotes the pulmonary macrophage activation. FASEB J, 2018; 32, 3264−77. doi:  10.1096/fj.201701118R
[53] Wang M, Mao C, Ouyang LL, et al. Long noncoding RNA LINC00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ, 2019; 26, 2329−43. doi:  10.1038/s41418-019-0304-y
[54] Liu Y, Li Y, Xu Q, et al. Long non-coding RNA-ATB promotes EMT during silica-induced pulmonary fibrosis by competitively binding miR-200c. Biochim Biophys Acta Mol Basis Dis, 2018; 1864, 420−31. doi:  10.1016/j.bbadis.2017.11.003
[55] Ma JX, Cui XQ, Rong Y, et al. Plasma LncRNA-ATB, a potential biomarker for diagnosis of patients with coal workers' pneumoconiosis: a case-control study. Int J Mol Sci, 2016; 17, 1367. doi:  10.3390/ijms17081367
[56] Chu H, Wang W, Luo W, et al. CircHECTD1 mediates pulmonary fibroblast activation via HECTD1. Ther Adv Chronic Dis, 2019; 10, 2040622319891558.
[57] Fang SC, Guo HF, Cheng YS, et al. circHECTD1 promotes the silica-induced pulmonary endothelial-mesenchymal transition via HECTD1. Cell Death Dis, 2018; 9, 396. doi:  10.1038/s41419-018-0432-1
[58] Zhao SR, Fung-Leung WP, Bittner A, et al. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One, 2014; 9, e78644. doi:  10.1371/journal.pone.0078644
[59] Chan JYW, Tsui JCC, Law PTW, et al. RNA-Seq revealed ATF3-regulated inflammation induced by silica. Toxicology, 2018; 393, 34−41. doi:  10.1016/j.tox.2017.11.001
[60] Chan JYW, Tsui JCC, Law PTW, et al. Profiling of the silica-induced molecular events in lung epithelial cells using the RNA-Seq approach. J Appl Toxicol, 2017; 37, 1162−73. doi:  10.1002/jat.3471
[61] Chen JY, Yao YQ, Su XL, et al. Comparative RNA-Seq transcriptome analysis on silica induced pulmonary inflammation and fibrosis in mice silicosis model. J Appl Toxicol, 2018; 38, 773−82. doi:  10.1002/jat.3587
[62] Shi KY, Jiang JZ, Ma TL, et al. Dexamethasone attenuates bleomycin-induced lung fibrosis in mice through TGF-β, Smad3 and JAK-STAT pathway. Int J Clin Exp Med, 2014; 7, 2645−50.
[63] Ju L, Chen JQ, Jiang ZQ, et al. Screening of differentially expressed serum proteins in patients with asbestosis. Chin J Ind Hyg Occup Dis, 2012; 30, 408−12. (In Chinese)
[64] Tooker BC, Newman LS, Bowler RP, et al. Proteomic detection of cancer in asbestosis patients using SELDI-TOF discovered serum protein biomarkers. Biomarkers, 2011; 16, 181−91. doi:  10.3109/1354750X.2010.543289
[65] Chen JJ, Jiang HY, Liu P, et al. Differential analysis of two-dimensional gel electrophoresis profiles in lung tissue of rats exposed to silica early. Chin J Prev Med, 2009; 43, 418−22. (In Chinese)
[66] Chen JJ, Chen L, Liu W, et al. Effects of Gymnadenia conopse achohol extract on early protein profiles in lung tissue of rats exposed to silica. Chin J Ind Hyg Occup Dis, 2012; 30, 432−5. (In Chinese)
[67] Kikuchi N, Ishii Y, Morishima Y, et al. Aggravation of bleomycin-induced pulmonary inflammation and fibrosis in mice lacking peroxiredoxin I. Am J Respir Cell Mol Biol, 2011; 45, 600−9. doi:  10.1165/rcmb.2010-0137OC
[68] Chu L, Wang TS, Hu YB, et al. Discovery of novel protein biomarkers in early silicosis by proteomics and identification of alpha B-crystallin. J Central South Univ (Med Ed), 2015; 40, 837−42. (In Chinese)
[69] Zhu Y, Yao JX, Duan YX, et al. Protein expression profile in rat silicosis model reveals upregulation of PTPN2 and its inhibitory effect on epithelial-Mesenchymal transition by Dephosphorylation of STAT3. Int J Mol Sci, 2020; 21, 1189. doi:  10.3390/ijms21041189
[70] Lee DY, Yun SM, Song MY, et al. Administration of steamed and freeze-dried mature silkworm larval powder prevents hepatic fibrosis and hepatocellular carcinogenesis by blocking TGF-β/STAT3 signaling cascades in rats. Cells, 2020; 9, 568. doi:  10.3390/cells9030568
[71] Pulivendala G, Bale S, Godugu C. Honokiol: a polyphenol neolignan ameliorates pulmonary fibrosis by inhibiting TGF-β/Smad signaling, matrix proteins and IL-6/CD44/STAT3 axis both in vitro and in vivo. Toxicol Appl Pharmacol, 2020; 391, 114913. doi:  10.1016/j.taap.2020.114913
[72] Li Y, Zhou HM, Li YL, et al. PTPN2 improved renal injury and fibrosis by suppressing STAT-induced inflammation in early diabetic nephropathy. J Cell Mol Med, 2019; 23, 4179−95. doi:  10.1111/jcmm.14304
[73] Na M, Hong X, Fuyu J, et al. Proteomic profile of TGF-β1 treated lung fibroblasts identifies novel markers of activated fibroblasts in the silica exposed rat lung. Exp Cell Res, 2019; 375, 1−9.
[74] Fu R, Li Q, Fan R, et al. iTRAQ-based secretome reveals that SiO2 induces the polarization of RAW264.7 macrophages by activation of the NOD-RIP2-NF-κB signaling pathway. Environ Toxicol Pharmacol, 2018; 63, 92−102. doi:  10.1016/j.etap.2018.08.010
[75] Shi YY, Gochuico BR, Yu GY, et al. Syndecan-2 exerts antifibrotic effects by promoting caveolin-1-mediated transforming growth factor-β receptor I internalization and inhibiting transforming growth factor-β1 signaling. Am J Respir Crit Care Med, 2013; 188, 831−41. doi:  10.1164/rccm.201303-0434OC
[76] Tsoyi K, Chu SG, Patino-Jaramillo NG, et al. Syndecan-2 attenuates radiation-induced pulmonary fibrosis and inhibits fibroblast activation by regulating PI3K/Akt/ROCK pathway via CD148. Am J Respir Cell Mol Biol, 2018; 58, 208−15. doi:  10.1165/rcmb.2017-0088OC
[77] Lai KKY, Kweon SM, Chi F, et al. Stearoyl-CoA desaturase promotes liver fibrosis and tumor development in mice via a Wnt positive-signaling loop by stabilization of low-density lipoprotein-receptor-related proteins 5 and 6. Gastroenterology, 2017; 152, 1477−91. doi:  10.1053/j.gastro.2017.01.021
[78] Nicholson JK, Lindon JC. Metabonomics. Nature, 2008; 455, 1054−6. doi:  10.1038/4551054a
[79] Arakaki AK, Skolnick J, McDonald JF. Marker metabolites can be therapeutic targets as well. Nature, 2008; 456, 443.
[80] Nobakht BF, Aliannejad R, Rezaei-Tavirani M, et al. The metabolomics of airway diseases, including COPD, asthma and cystic fibrosis. Biomarkers, 2015; 20, 5−16. doi:  10.3109/1354750X.2014.983167
[81] Zhang L, Zheng JM, Ahmed R, et al. A high-performing plasma metabolite panel for early-stage lung cancer detection. Cancers, 2020; 12, 622. doi:  10.3390/cancers12030622
[82] Hu JZ, Rommereim DN, Minard KR, et al. Metabolomics in lung inflammation: a high-resolution 1H NMR study of mice exposedto silica dust. Toxicol Mech Methods, 2008; 18, 385−98. doi:  10.1080/15376510701611032
[83] Lee SH, Wang TY, Hong JH, et al. NMR-based metabolomics to determine acute inhalation effects of nano- and fine-sized ZnO particles in the rat lung. Nanotoxicology, 2016; 10, 924−34. doi:  10.3109/17435390.2016.1144825
[84] Bowler RP, Wendt CH, Fessler MB, et al. New strategies and challenges in lung proteomics and metabolomics. An official American thoracic society workshop report. Ann Am Thorac Soc, 2017; 14, 1721−43. doi:  10.1513/AnnalsATS.201710-770WS
[85] Deng YX, Finck A, Fan R. Single-cell Omics analyses enabled by microchip technologies. Annu Rev Biomed Eng, 2019; 21, 365−93. doi:  10.1146/annurev-bioeng-060418-052538
[86] Efremova M, Teichmann SA. Computational methods for single-cell omics across modalities. Nat Methods, 2020; 17, 14−7. doi:  10.1038/s41592-019-0692-4