[1] Broberg CA, Calder TJ, Orth K. Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect, 2011; 13, 992−1001. doi:  10.1016/j.micinf.2011.06.013
[2] Yildiz FH, Visick KL. Vibrio biofilms: so much the same yet so different. Trends Microbiol, 2009; 17, 109−18. doi:  10.1016/j.tim.2008.12.004
[3] Chen YS, Dai JL, Morris JG Jr, et al. Genetic analysis of the capsule polysaccharide (K antigen) and exopolysaccharide genes in pandemic Vibrio parahaemolyticus O3: K6. BMC Microbiol, 2010; 10, 274. doi:  10.1186/1471-2180-10-274
[4] Ferreira RB, Antunes LCM, Greenberg EP, et al. Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J Bacteriol, 2008; 190, 851−60. doi:  10.1128/JB.01462-07
[5] Ferreira RB, Chodur DM, Antunes LCM, et al. Output targets and transcriptional regulation by a cyclic dimeric GMP-responsive circuit in the Vibrio parahaemolyticus scr network. J Bacteriol, 2012; 194, 914−24. doi:  10.1128/JB.05807-11
[6] Kim YK, McCarter LL. ScrG, a GGDEF-EAL protein, participates in regulating swarming and sticking in Vibrio parahaemolyticus. J Bacteriol, 2007; 189, 4094−107. doi:  10.1128/JB.01510-06
[7] Güvener ZT, McCarter LL. Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus. J Bacteriol, 2003; 185, 5431−41. doi:  10.1128/JB.185.18.5431-5441.2003
[8] Zhang LL, Weng YW, Wu Y, et al. H-NS is an activator of exopolysaccharide biosynthesis genes transcription in Vibrio parahaemolyticus. Microb Pathog, 2018; 116, 164−7. doi:  10.1016/j.micpath.2018.01.025
[9] Zhang YQ, Qiu Y, Gao H, et al. OpaR controls the metabolism of c-di-GMP in Vibrio parahaemolyticus. Front Microbiol, 2021; 12, 676436. doi:  10.3389/fmicb.2021.676436
[10] Wang L, Ling Y, Jiang HW, et al. AphA is required for biofilm formation, motility, and virulence in pandemic Vibrio parahaemolyticus. Int J Food Microbiol, 2013; 160, 245−51. doi:  10.1016/j.ijfoodmicro.2012.11.004
[11] Biswas S, Chouhan OP, Bandekar D. Diguanylate cyclases in Vibrio cholerae: essential regulators of lifestyle switching. Front Cell Infect Microbiol, 2020; 10, 582947. doi:  10.3389/fcimb.2020.582947
[12] Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol, 2017; 15, 271−84. doi:  10.1038/nrmicro.2016.190
[13] Kimbrough JH, McCarter LL. Identification of three new GGDEF and EAL domain-containing proteins participating in the scr surface colonization regulatory network in Vibrio parahaemolyticus. J Bacteriol, 2021; 203, e00409−20.
[14] Kimbrough JH, Cribbs JT, McCarter LL. Homologous c-di-GMP-binding scr transcription factors orchestrate biofilm development in Vibrio parahaemolyticus. J Bacteriol, 2020; 202, e00723−19.
[15] Zhong XJ, Lu Z, Wang F, et al. Characterization of GefA, a GGEEF domain-containing protein that modulates Vibrio parahaemolyticus motility, biofilm formation, and virulence. Appl Environ Microbiol, 2022; 88, e0223921. doi:  10.1128/aem.02239-21
[16] Grainger DC. Structure and function of bacterial H-NS protein. Biochem Soc Trans, 2016; 44, 1561−9. doi:  10.1042/BST20160190
[17] Sun FJ, Zhang YQ, Qiu YF, et al. H-NS is a repressor of major virulence gene loci in Vibrio parahaemolyticus. Front Microbiol, 2014; 5, 675.
[18] Salomon D, Klimko JA, Orth K. H-NS regulates the Vibrio parahaemolyticus type VI secretion system 1. Microbiology (Reading), 2014; 160, 1867−73. doi:  10.1099/mic.0.080028-0
[19] Wang Y, Zhang YQ, Yin Z, et al. H-NS represses transcription of the flagellin gene lafA of lateral flagella in Vibrio parahaemolyticus. Can J Microbiol, 2018; 64, 69−74. doi:  10.1139/cjm-2017-0315
[20] Enos-Berlage JL, Guvener ZT, Keenan CE, et al. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol, 2005; 55, 1160−82.
[21] Makino K, Oshima K, Kurokawa K, et al. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet, 2003; 361, 743−9. doi:  10.1016/S0140-6736(03)12659-1
[22] Gao H, Ma LZ, Qin Q, et al. Fur represses Vibrio cholerae biofilm formation via direct regulation of vieSAB, cdgD, vpsU, and vpsA-K transcription. Front Microbiol, 2020; 11, 587159. doi:  10.3389/fmicb.2020.587159
[23] Gao H, Zhang YQ, Yang L, et al. Regulatory effects of cAMP receptor protein (CRP) on porin genes and its own gene in Yersinia pestis. BMC Microbiol, 2011; 11, 40. doi:  10.1186/1471-2180-11-40
[24] Parales RE, Harwood CS. Construction and use of a new broad-host-range lacZ transcriptional fusion vector, pHRP309, for gram- bacteria. Gene, 1993; 133, 23−30. doi:  10.1016/0378-1119(93)90220-W
[25] Qiu Y, Hu LF, Yang WH, et al. The type VI secretion system 2 of Vibrio parahaemolyticus is regulated by QsvR. Microb Pathog, 2020; 149, 104579. doi:  10.1016/j.micpath.2020.104579
[26] Zhang LY, Osei-Adjei G, Zhang Y, et al. CalR is required for the expression of T6SS2 and the adhesion of Vibrio parahaemolyticus to HeLa cells. Arch Microbiol, 2017; 199, 931−8. doi:  10.1007/s00203-017-1361-6
[27] Jensen RV, DePasquale SM, Harbolick EA, et al. Complete genome sequence of prepandemic Vibrio parahaemolyticus BB22OP. Genome Announc, 2013; 1, e00002−12.
[28] Li W, Wang JJ, Qian H, et al. Insights into the role of extracellular DNA and extracellular proteins in biofilm formation of Vibrio parahaemolyticus. Front Microbiol, 2020; 11, 813. doi:  10.3389/fmicb.2020.00813
[29] Zhang YQ, Zhang LY, Hou SN, et al. The master quorum-sensing regulator OpaR is activated indirectly by H-NS in Vibrio parahaemolyticus. Curr Microbiol, 2016; 73, 71−6. doi:  10.1007/s00284-016-1018-8
[30] Wang J, Lin L, Sun FJ, et al. Regulation of swimming motility by H-NS in Vibrio parahaemolyticus. Mil Med Sci, 2015; 9, 694−7. (In Chinese
[31] Ashrafudoulla M, Mizan FR, Park SH, et al. Current and future perspectives for controlling Vibrio biofilms in the seafood industry: a comprehensive review. Crit Rev Food Sci Nutr, 2021; 61, 1827−51. doi:  10.1080/10408398.2020.1767031
[32] Wang HX, Ayala JC, Silva AJ, et al. The histone-like nucleoid structuring protein (H-NS) is a repressor of Vibrio cholerae exopolysaccharide biosynthesis (vps) genes. Appl Environ Microbiol, 2012; 78, 2482−8. doi:  10.1128/AEM.07629-11
[33] Ayala JC, Wang HX, Silva AJ, et al. Repression by H-NS of genes required for the biosynthesis of the Vibrio cholerae biofilm matrix is modulated by the second messenger cyclic diguanylic acid. Mol Microbiol, 2015; 97, 630−45. doi:  10.1111/mmi.13058