| [1] | Sun KL, Song Y, He FL, et al. A review of human and animals exposure to polycyclic aromatic hydrocarbons: health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Sci Total Environ, 2021; 773, 145403. doi: 10.1016/j.scitotenv.2021.145403 |
| [2] | Pavanello S, Dioni L, Hoxha M, et al. Mitochondrial DNA copy number and exposure to polycyclic aromatic hydrocarbons. Cancer Epidemiol Biomarkers Prev, 2013; 22, 1722−9. doi: 10.1158/1055-9965.EPI-13-0118 |
| [3] | Filograna R, Mennuni M, Alsina D, et al. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett, 2021; 595, 976−1002. |
| [4] | Fukunaga H. Mitochondrial DNA copy number and developmental origins of health and disease (DOHaD). Int J Mol Sci, 2021; 22, 6634. doi: 10.3390/ijms22126634 |
| [5] | Roubicek DA, de Souza-Pinto NC. Mitochondria and mitochondrial DNA as relevant targets for environmental contaminants. Toxicology, 2017; 391, 100−8. doi: 10.1016/j.tox.2017.06.012 |
| [6] | Castellani CA, Longchamps RJ, Sun J, et al. Thinking outside the nucleus: mitochondrial DNA copy number in health and disease. Mitochondrion, 2020; 53, 214−23. doi: 10.1016/j.mito.2020.06.004 |
| [7] | Bansal S, Leu AN, Gonzalez FJ, et al. Mitochondrial targeting of cytochrome P450 (CYP) 1B1 and its role in polycyclic aromatic hydrocarbon-induced mitochondrial dysfunction. J Biol Chem, 2014; 289, 9936−51. doi: 10.1074/jbc.M113.525659 |
| [8] | Golden TR, Melov S. Mitochondrial DNA mutations, oxidative stress, and aging. Mech Ageing Dev, 2001; 122, 1577−89. doi: 10.1016/S0047-6374(01)00288-3 |
| [9] | Filipsson AF, Sand S, Nilsson J, et al. The benchmark dose method-review of available models, and recommendations for application in health risk assessment. Crit Rev Toxicol, 2003; 33, 505−42. |
| [10] | Crump KS. A new method for determining allowable daily intakes. Fundam Appl Toxicol, 1984; 4, 854−71. doi: 10.1016/0272-0590(84)90107-6 |
| [11] | Wang W, Wang PP, Wang SH, et al. Benchmark dose assessment for coke oven emissions-induced telomere length effects in occupationally exposed workers in China. Ecotoxicol Environ Saf, 2019; 182, 109453. doi: 10.1016/j.ecoenv.2019.109453 |
| [12] | Wang W, Qiu YL, Jiao J, et al. Genotoxicity in vinyl chloride-exposed workers and its implication for occupational exposure limit. Am J Ind Med, 2011; 54, 800−10. doi: 10.1002/ajim.20990 |
| [13] | Duan XR, Yang YL, Zhang DP, et al. Genetic polymorphisms, mRNA expression levels of telomere-binding proteins, and associates with telomere damage in PAHs-Exposure workers. Chemosphere, 2019; 231, 442−9. doi: 10.1016/j.chemosphere.2019.05.134 |
| [14] | Duan XR, Yang YL, Zhang H, et al. Polycyclic aromatic hydrocarbon exposure, miRNA genetic variations, and associated leukocyte mitochondrial DNA copy number: a cross-sectional study in China. Chemosphere, 2020; 246, 125773. doi: 10.1016/j.chemosphere.2019.125773 |
| [15] | Shao K, Shapiro AJ. A web-based system for bayesian benchmark dose estimation. Environ Health Perspect, 2018; 126, 017002. doi: 10.1289/EHP1289 |
| [16] | RIVM. PROAST. the Netherlands Ministry of Health, Welfare and Sport (VWS). 2012. http://www.rivm.nl/en/Documents_and_publications/Scientific/Models/PROAST. [2022−06−16]. |
| [17] | Davis JA, Gift JS, Zhao QJ. Introduction to benchmark dose methods and U. S. EPA's benchmark dose software (BMDS) version 2.1. 1. Toxicol Appl Pharmacol, 2011; 254, 181−91. doi: 10.1016/j.taap.2010.10.016 |
| [18] | Committee EFSAS, Hardy A, Benford D, et al. Update: use of the benchmark dose approach in risk assessment. EFSA J, 2017; 15, e04658. |
| [19] | Gao ML, Chen L, Li YF, et al. Synergistic increase of oxidative stress and tumor markers in PAH-exposed workers. Asian Pac J Cancer Prev, 2014; 15, 7105−12. doi: 10.7314/APJCP.2014.15.17.7105 |
| [20] | Hu Y, Chen B, Yin Z, et al. Increased risk of chronic obstructive pulmonary diseases in coke oven workers: interaction between occupational exposure and smoking. Thorax, 2006; 61, 290−5. doi: 10.1136/thx.2005.051524 |
| [21] | Carugno M, Pesatori AC, Dioni L, et al. Increased mitochondrial DNA copy number in occupations associated with low-dose benzene exposure. Environ Health Perspect, 2012; 120, 210−5. doi: 10.1289/ehp.1103979 |
| [22] | Pieters N, Janssen BG, Dewitte H, et al. Biomolecular markers within the core axis of aging and particulate air pollution exposure in the elderly: a cross-sectional study. Environ Health Perspect, 2016; 124, 943−50. doi: 10.1289/ehp.1509728 |
| [23] | Białas AJ, Sitarek P, Miłkowska-Dymanowska J, et al. The role of mitochondria and oxidative/antioxidative imbalance in pathobiology of chronic obstructive pulmonary disease. Oxid Med Cell Longev, 2016; 2016, 7808576. |
| [24] | Guo CY, Sun L, Chen XP, et al. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res, 2013; 8, 2003−14. |
| [25] | Steggall A, Mordi IR, Lang CC. Targeting metabolic modulation and mitochondrial dysfunction in the treatment of heart failure. Diseases, 2017; 5, 14. doi: 10.3390/diseases5020014 |
| [26] | Srinivasan S, Guha M, Kashina A, et al. Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. Biochim Biophys Acta (BBA)- Bioenerg, 2017; 1858, 602−14. doi: 10.1016/j.bbabio.2017.01.004 |
| [27] | Yang SY, Castellani CA, Longchamps RJ, et al. Blood-derived mitochondrial DNA copy number is associated with gene expression across multiple tissues and is predictive for incident neurodegenerative disease. Genome Res, 2021; 31, 349−58. doi: 10.1101/gr.269381.120 |
| [28] | Pieters N, Koppen G, Smeets K, et al. Decreased mitochondrial DNA content in association with exposure to polycyclic aromatic hydrocarbons in house dust during wintertime: from a population enquiry to cell culture. PLoS One, 2013; 8, e63208. doi: 10.1371/journal.pone.0063208 |
| [29] | Du JJ, Pan BL, Cao XM, et al. Urinary polycyclic aromatic hydrocarbon metabolites, peripheral blood mitochondrial DNA copy number, and neurobehavioral function in coke oven workers. Chemosphere, 2020; 261, 127628. doi: 10.1016/j.chemosphere.2020.127628 |
| [30] | Hou LF, Zhu ZZ, Zhang X, et al. Airborne particulate matter and mitochondrial damage: a cross-sectional study. Environ Health, 2010; 9, 48. doi: 10.1186/1476-069X-9-48 |
| [31] | National Health Commission of the People’s Republic of China. GBZ 2.1-2019. Occupational exposure limits for hazardous agents in the workplace Part 1: chemical hazardous agents. Beijing: Standards Press of China, 2019. (In Chinese) |
| [32] | NIOSH. Coke Oven Emissions, Pocket Guide to Chemical Hazards. U. S. NationalInstitute for Occupational Safety and Health, 1997. |
| [33] | OSHA. Occupational Safety and Health Standards, oxicand Hazardous Substances. Occupational Safety and Health Administration, 1998. |
| [34] | U. S. EPA. Benchmark dose technical guidance. Washington: U. S. Environmental Protection Agency, 2012. |
| [35] | Chiu WA, Slob W. A unified probabilistic framework for dose-response assessment of human health effects. Environ Health Perspect, 2015; 123, 1241−54. doi: 10.1289/ehp.1409385 |
| [36] | Zou KL, Wang PP, Duan XR, et al. Benchmark dose estimation for coke oven emissions based on oxidative damage in Chinese exposed workers. Ecotoxicol Environ Saf, 2020; 202, 110889. doi: 10.1016/j.ecoenv.2020.110889 |
| [37] | Herrmann M, Pusceddu I, März W, et al. Telomere biology and age-related diseases. Clin Chem Lab Med, 2018; 56, 1210−22. doi: 10.1515/cclm-2017-0870 |