| [1] | Torre LA, Trabert B, DeSantis CE, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin, 2018; 68, 284−96. doi: 10.3322/caac.21456 |
| [2] | Eisenhauer EA. Real-world evidence in the treatment of ovarian cancer. Ann Oncol, 2017; 28, viii61−5. doi: 10.1093/annonc/mdx443 |
| [3] | Narod S. Can advanced-stage ovarian cancer be cured? Nat Rev Clin Oncol, 2016; 13, 255−61. doi: 10.1038/nrclinonc.2015.224 |
| [4] | Buechel M, Herzog TJ, Westin SN, et al. Treatment of patients with recurrent epithelial ovarian cancer for whom platinum is still an option. Ann Oncol, 2019; 30, 721−32. doi: 10.1093/annonc/mdz104 |
| [5] | Stuart GCE. First-line treatment regimens and the role of consolidation therapy in advanced ovarian cancer. Gynecol Oncol, 2003; 90, S8−15. |
| [6] | Moufarrij S, Dandapani M, Arthofer E, et al. Epigenetic therapy for ovarian cancer: promise and progress. Clin Epigenetics, 2019; 11, 7. doi: 10.1186/s13148-018-0602-0 |
| [7] | Li M, Yin J, Mao N, et al. Upregulation of phosphorylated cofilin 1 correlates with taxol resistance in human ovarian cancer in vitro and in vivo. Oncol Rep, 2013; 29, 58−66. doi: 10.3892/or.2012.2078 |
| [8] | Mizuno K. Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal, 2013; 25, 457−69. doi: 10.1016/j.cellsig.2012.11.001 |
| [9] | Shishkin S, Eremina L, Pashintseva N, et al. Cofilin-1 and Other ADF/Cofilin Superfamily Members in Human Malignant Cells. Int J Mol Sci, 2016; 18. |
| [10] | Aggelou H, Chadla P, Nikou S, et al. LIMK/cofilin pathway and Slingshot are implicated in human colorectal cancer progression and chemoresistance. Virchows Arch, 2018; 472, 727−37. doi: 10.1007/s00428-018-2298-0 |
| [11] | Hoffmann L, Rust MB, Culmsee C. Actin(g) on mitochondria - a role for cofilin1 in neuronal cell death pathways. Biol Chem, 2019; 400, 1089−97. doi: 10.1515/hsz-2019-0120 |
| [12] | Kolegova ES, Kakurina GV, Kondakova IV, et al. Adenylate Cyclase-Associated Protein 1 and Cofilin in Progression of Non-Small Cell Lung Cancer. Bull Exp Biol Med, 2019; 167, 393−95. doi: 10.1007/s10517-019-04534-9 |
| [13] | Lee M-H, Kundu JK, Chae J-I, et al. Targeting ROCK/LIMK/cofilin signaling pathway in cancer. Arch Pharm Res, 2019; 42, 481−91. doi: 10.1007/s12272-019-01153-w |
| [14] | Wang F, Wu D, Xu Z, et al. miR-182-5p affects human bladder cancer cell proliferation, migration and invasion through regulating Cofilin 1. Cancer Cell Int, 2019; 19, 42. doi: 10.1186/s12935-019-0758-5 |
| [15] | Qin Y, Li W, Long Y, et al. Relationship between p-cofilin and cisplatin resistance in patients with ovarian cancer and the role of p-cofilin in prognosis. Cancer Biomark, 2019; 24, 469−75. |
| [16] | Li M, Shi J, Zou L, et al. The relationship between phosphorylation at Ser3 of cofilinl and TaxoI resistance of ovarian cancer in elderly female patients. Chinese Journal of Geriatrics, 2017; 2. |
| [17] | Liao PH, Hsu HH, Chen TS, et al. Phosphorylation of cofilin-1 by ERK confers HDAC inhibitor resistance in hepatocellular carcinoma cells via decreased ROS-mediated mitochondria injury. Oncogene, 2017; 36, 1978−90. doi: 10.1038/onc.2016.357 |
| [18] | Tang Q-F, Sun J, Yu H, et al. The Zuo Jin Wan Formula Induces Mitochondrial Apoptosis of Cisplatin-Resistant Gastric Cancer Cells via Cofilin-1. Evid Based Complement Alternat Med, 2016; 2016, 8203789. |
| [19] | Wabnitz GH, Goursot C, Jahraus B, et al. Mitochondrial translocation of oxidized cofilin induces caspase-independent necrotic-like programmed cell death of T cells. Cell Death Dis, 2010; 1, e58. doi: 10.1038/cddis.2010.36 |
| [20] | Chua BT, Volbracht C, Tan KO, et al. Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nat Cell Biol, 2003; 5, 1083−9. doi: 10.1038/ncb1070 |
| [21] | Matuszyk J, Klopotowska D. miR-125b lowers sensitivity to apoptosis following mitotic arrest: Implications for breast cancer therapy. J Cell Physiol, 2020; 235, 6335−44. doi: 10.1002/jcp.29610 |
| [22] | Nair PR. Delivering Combination Chemotherapies and Targeting Oncogenic Pathways via Polymeric Drug Delivery Systems. Polymers (Basel), 2019; 11. |
| [23] | Park S-J, Wu C-H, Gordon JD, et al. Taxol induces caspase-10-dependent apoptosis. J Biol Chem, 2004; 279, 51057−67. doi: 10.1074/jbc.M406543200 |
| [24] | Young AI, Timpson P, Gallego-Ortega D, et al. Myeloid cell leukemia 1 (MCL-1), an unexpected modulator of protein kinase signaling during invasion. Cell Adh Migr, 2018; 12, 513−23. doi: 10.1080/19336918.2017.1393591 |
| [25] | Young AIJ, Law AMK, Castillo L, et al. MCL-1 inhibition provides a new way to suppress breast cancer metastasis and increase sensitivity to dasatinib. Breast Cancer Res, 2016; 18, 125. doi: 10.1186/s13058-016-0781-6 |
| [26] | Palve V, Mallick S, Ghaisas G, et al. Overexpression of Mcl-1L splice variant is associated with poor prognosis and chemoresistance in oral cancers. PLoS One, 2014; 9, e111927. doi: 10.1371/journal.pone.0111927 |
| [27] | Toge M, Yokoyama S, Kato S, et al. Critical contribution of MCL-1 in EMT-associated chemo-resistance in A549 non-small cell lung cancer. Int J Oncol, 2015; 46, 1844−48. doi: 10.3892/ijo.2015.2861 |
| [28] | Wertz IE, Kusam S, Lam C, et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature, 2011; 471, 110−14. doi: 10.1038/nature09779 |
| [29] | Wei D, Zhang Q, Schreiber JS, et al. Targeting mcl-1 for radiosensitization of pancreatic cancers. Transl Oncol, 2015; 8, 47−54. doi: 10.1016/j.tranon.2014.12.004 |
| [30] | Balko JM, Giltnane JM, Wang K, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov, 2014; 4, 232−45. doi: 10.1158/2159-8290.CD-13-0286 |
| [31] | Xiao Y, Nimmer P, Sheppard GS, et al. MCL-1 Is a Key Determinant of Breast Cancer Cell Survival: Validation of MCL-1 Dependency Utilizing a Highly Selective Small Molecule Inhibitor. Mol Cancer Ther, 2015; 14, 1837−47. doi: 10.1158/1535-7163.MCT-14-0928 |
| [32] | Moriyama K, Iida K, Yahara I. Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells, 1996; 1, 73−86. doi: 10.1046/j.1365-2443.1996.05005.x |
| [33] | Nishita M, Wang Y, Tomizawa C, et al. Phosphoinositide 3-kinase-mediated activation of cofilin phosphatase Slingshot and its role for insulin-induced membrane protrusion. J Biol Chem, 2004; 279, 7193−98. doi: 10.1074/jbc.M312591200 |
| [34] | Huang TY, DerMardirossian C, Bokoch GM. Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol, 2006; 18, 26−31. doi: 10.1016/j.ceb.2005.11.005 |
| [35] | Niwa R, Nagata-Ohashi K, Takeichi M, et al. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 2002; 108, 233−46. doi: 10.1016/S0092-8674(01)00638-9 |
| [36] | Eiseler T, Döppler H, Yan IK, et al. Protein kinase D1 regulates cofilin-mediated F-actin reorganization and cell motility through slingshot. Nat Cell Biol, 2009; 11, 545−56. doi: 10.1038/ncb1861 |
| [37] | Peterburs P, Heering J, Link G, et al. Protein kinase D regulates cell migration by direct phosphorylation of the cofilin phosphatase slingshot 1 like. Cancer Res, 2009; 69, 5634−38. doi: 10.1158/0008-5472.CAN-09-0718 |
| [38] | Chen C, Maimaiti Y, Zhijun S, et al. Slingshot-1L, a cofilin phosphatase, induces primary breast cancer metastasis. Oncotarget, 2017; 8, 66195−203. doi: 10.18632/oncotarget.19855 |
| [39] | Song X, Xie D, Xia X, et al. Role of SSH1 in colorectal cancer prognosis and tumor progression. J Gastroenterol Hepatol, 2020; 35, 1180−8. doi: 10.1111/jgh.15001 |