[1] Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine (Abingdon), 2014; 42, 698−702.
[2] Guariguata L, Whiting DR, Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract, 2014; 103, 137−49. doi:  10.1016/j.diabres.2013.11.002
[3] Van Gaal L, Scheen A. Weight management in type 2 diabetes: current and emerging approaches to treatment. Diabetes Care, 2015; 38, 1161−72. doi:  10.2337/dc14-1630
[4] Ezenwaka CE, Okoye O, Esonwune C, et al. High prevalence of abdominal obesity increases the risk of the metabolic syndrome in Nigerian type 2 diabetes patients: using the International Diabetes Federation worldwide definition. Metab Syndr Relat Disord, 2014; 12, 277−82. doi:  10.1089/met.2013.0139
[5] Russell-Jones D, Khan R. Insulin-associated weight gain in diabetes--causes, effects and coping strategies. Diabetes Obes Metab, 2007; 9, 799−812. doi:  10.1111/j.1463-1326.2006.00686.x
[6] Nauck M. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab, 2016; 18, 203−16. doi:  10.1111/dom.12591
[7] Wick A, Newlin K. Incretin-based therapies: therapeutic rationale and pharmacological promise for type 2 diabetes. J Am Acad Nurse Pract, 2009; 21 Suppl 1, 623−30.
[8] Stonehouse AH, Darsow T, Maggs DG. Incretin-based therapies. J Diabetes, 2012; 4, 55−67. doi:  10.1111/j.1753-0407.2011.00143.x
[9] Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. The Lancet, 2006; 368, 1696−705. doi:  10.1016/S0140-6736(06)69705-5
[10] Meier JJ, Nauck MA, Kranz D, et al. Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes, 2004; 53, 654−62. doi:  10.2337/diabetes.53.3.654
[11] Drucker DJ. Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: preclinical biology and mechanisms of action. Diabetes Care, 2007; 30, 1335−43. doi:  10.2337/dc07-0228
[12] Xu W, Bi Y, Sun Z, et al. Comparison of the effects on glycaemic control and beta-cell function in newly diagnosed type 2 diabetes patients of treatment with exenatide, insulin or pioglitazone: a multicentre randomized parallel-group trial (the CONFIDENCE study). J Intern Med, 2015; 277, 137−50. doi:  10.1111/joim.12293
[13] Oe H, Nakamura K, Kihara H, et al. Comparison of effects of sitagliptin and voglibose on left ventricular diastolic dysfunction in patients with type 2 diabetes: results of the 3D trial. Cardiovasc Diabetol, 2015; 14, 83. doi:  10.1186/s12933-015-0242-z
[14] Gautier JF, Monguillon P, Verier-Mine O, et al. Which oral antidiabetic drug to combine with metformin to minimize the risk of hypoglycemia when initiating basal insulin? A randomized controlled trial of a DPP4 inhibitor versus insulin secretagogues. Diabetes Res Clin Pract, 2016; 116, 26−8. doi:  10.1016/j.diabres.2016.04.008
[15] Arjona Ferreira JC, Marre M, Barzilai N, et al. Efficacy and safety of sitagliptin versus glipizide in patients with type 2 diabetes and moderate-to-severe chronic renal insufficiency. Diabetes Care, 2013; 36, 1067−73. doi:  10.2337/dc12-1365
[16] Davies MJ, Donnelly R, Barnett AH, et al. Exenatide compared with long-acting insulin to achieve glycaemic control with minimal weight gain in patients with type 2 diabetes: results of the helping evaluate exenatide in patients with diabetes compared with long-acting insulin (HEELA) study. Diabetes Obes Metab, 2009; 11, 1153−62. doi:  10.1111/j.1463-1326.2009.01154.x
[17] Rosenstock J, Rendell MS, Gross JL, et al. Alogliptin added to insulin therapy in patients with type 2 diabetes reduces HbA(1C) without causing weight gain or increased hypoglycaemia. Diabetes Obes Metab, 2009; 11, 1145−52. doi:  10.1111/j.1463-1326.2009.01124.x
[18] Aso Y, Jojima T, Iijima T, et al. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, increases the number of circulating CD34(+)CXCR4(+) cells in patients with type 2 diabetes. Endocrine, 2015; 50, 659−64. doi:  10.1007/s12020-015-0688-5
[19] Wysham C, Blevins T, Arakaki R, et al. Efficacy and safety of dulaglutide added onto pioglitazone and metformin versus exenatide in type 2 diabetes in a randomized controlled trial (AWARD-1). Diabetes Care, 2014; 37, 2159−67. doi:  10.2337/dc13-2760
[20] Giorgino F, Benroubi M, Sun JH, et al. Efficacy and safety of once-weekly dulaglutide versus insulin glargine in patients with type 2 diabetes on metformin and glimepiride (AWARD-2). Diabetes Care, 2015; 38, 2241−9. doi:  10.2337/dc14-1625
[21] Apovian CM, Bergenstal RM, Cuddihy RM, et al. Effects of exenatide combined with lifestyle modification in patients with type 2 diabetes. Am J Med, 2010; 123, 468.e469−417.
[22] Buse JB, Bergenstal RM, Glass LC, et al. Use of twice-daily exenatide in Basal insulin-treated patients with type 2 diabetes: a randomized, controlled trial. Ann Intern Med, 2011; 154, 103−12. doi:  10.7326/0003-4819-154-2-201101180-00300
[23] Nauck MA, Duran S, Kim D, et al. A comparison of twice-daily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: a non-inferiority study. Diabetologia, 2007; 50, 259−67. doi:  10.1007/s00125-006-0510-2
[24] Esposito K, Cozzolino D, Bellastella G, et al. Dipeptidyl peptidase-4 inhibitors and HbA1c target of < 7% in type 2 diabetes: meta-analysis of randomized controlled trials. Diabetes Obes Metab, 2011; 13, 594−603. doi:  10.1111/j.1463-1326.2011.01380.x
[25] Monami M, Dicembrini I, Marchionni N, et al. Effects of glucagon-like peptide-1 receptor agonists on body weight: a meta-analysis. Exp Diabetes Res, 2012; 2012, 672658.
[26] Vilsboll T, Christensen M, Junker AE, et al. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ, 2012; 344, d7771. doi:  10.1136/bmj.d7771
[27] Katout M, Zhu H, Rutsky J, et al. Effect of GLP-1 mimetics on blood pressure and relationship to weight loss and glycemia lowering: results of a systematic meta-analysis and meta-regression. Am J Hypertens, 2014; 27, 130−9. doi:  10.1093/ajh/hpt196
[28] Potts JE, Gray LJ, Brady EM, et al. The effect of glucagon-like peptide 1 receptor agonists on weight loss in type 2 diabetes: a systematic review and mixed treatment comparison meta-analysis. PLoS One, 2015; 10, e0126769. doi:  10.1371/journal.pone.0126769
[29] Zhong X, Zhang T, Liu Y, et al. Effects of three injectable antidiabetic agents on glycaemic control, weight change and drop-out in type 2 diabetes suboptimally controlled with metformin and/or a sulfonylurea: A network meta-analysis. Diabetes Res Clin Pract, 2015; 109, 451−60. doi:  10.1016/j.diabres.2015.05.048
[30] Liu SC, Tu YK, Chien MN, et al. Effect of antidiabetic agents added to metformin on glycaemic control, hypoglycaemia and weight change in patients with type 2 diabetes: a network meta-analysis. Diabetes Obes Metab, 2012; 14, 810−20. doi:  10.1111/j.1463-1326.2012.01606.x
[31] Sun F, Chai S, Li L, et al. Effects of glucagon-like peptide-1 receptor agonists on weight loss in patients with type 2 diabetes: a systematic review and network meta-analysis. J Diabetes Res, 2015; 2015, 157201.
[32] Sun F, Wu S, Guo S, et al. Effect of GLP-1 receptor agonists on waist circumference among type 2 diabetes patients: a systematic review and network meta-analysis. Endocrine, 2015; 48, 794−803. doi:  10.1007/s12020-014-0373-0
[33] Rouse B, Chaimani A, Li T. Network meta-analysis: an introduction for clinicians. Intern Emerg Med, 2017; 12, 103−11. doi:  10.1007/s11739-016-1583-7
[34] Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol, 2011; 64, 383−94. doi:  10.1016/j.jclinepi.2010.04.026
[35] Shim S, Yoon BH, Shin IS, et al. Network meta-analysis: application and practice using Stata. Epidemiol Health, 2017; 39, e2017047. doi:  10.4178/epih.e2017047
[36] Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol, 2011; 64, 163−71. doi:  10.1016/j.jclinepi.2010.03.016
[37] Caldwell DM, Ades AE, Higgins JP. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ, 2005; 331, 897−900. doi:  10.1136/bmj.331.7521.897
[38] Higgins JP, Jackson D, Barrett JK, et al. Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods, 2012; 3, 98−110. doi:  10.1002/jrsm.1044
[39] Jansen JP, Fleurence R, Devine B, et al. Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 1. Value Health, 2011; 14, 417−28. doi:  10.1016/j.jval.2011.04.002
[40] van Valkenhoef G, Dias S, Ades AE, et al. Automated generation of node-splitting models for assessment of inconsistency in network meta-analysis. Res Synth Methods, 2016; 7, 80−93. doi:  10.1002/jrsm.1167
[41] Neupane B, Richer D, Bonner AJ, et al. Network meta-analysis using R: a review of currently available automated packages. PLoS One, 2014; 9, e115065. doi:  10.1371/journal.pone.0115065
[42] Chaimani A, Salanti G. Using network meta-analysis to evaluate the existence of small-study effects in a network of interventions. Res Synth Methods, 2012; 3, 161−76. doi:  10.1002/jrsm.57
[43] Gerich JE. Contributions of insulin-resistance and insulin-secretory defects to the pathogenesis of type 2 diabetes mellitus. Mayo Clin Proc, 2003; 78, 447−56. doi:  10.4065/78.4.447
[44] Pi-Sunyer FX. The impact of weight gain on motivation, compliance, and metabolic control in patients with type 2 diabetes mellitus. Postgrad Med, 2009; 121, 94−107. doi:  10.3810/pgm.2009.09.2056
[45] Riobo Servan P. Obesity and diabetes. Nutr Hosp, 2013; 28, 138−43.
[46] Klein S, Sheard NF, Pi-Sunyer X, et al. Weight management through lifestyle modification for the prevention and management of type 2 diabetes: rationale and strategies: a statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American Society for Clinical Nutrition. Diabetes Care, 2004; 27, 2067−73. doi:  10.2337/diacare.27.8.2067
[47] Ten Kulve JS, Veltman DJ, van Bloemendaal L, et al. Liraglutide reduces CNS activation in response to visual food cues only after short-term treatment in patients with type 2 diabetes. Diabetes Care, 2016; 39, 214−21. doi:  10.2337/dc16-1522
[48] Ishii S, Nagai Y, Sada Y, et al. Liraglutide reduces visceral and intrahepatic fat without significant loss of muscle mass in obese patients with type 2 diabetes: a prospective case series. J Clin Med Res, 2019; 11, 219−24. doi:  10.14740/jocmr3647
[49] Perna S, Rondanelli M, Astrone P, et al. Twenty-four-week effects of liraglutide on body composition, adherence to appetite, and lipid profile in overweight and obese patients with type 2 diabetes mellitus. Patient Prefer Adherence, 2016; 10, 407−13.
[50] Jendle J, Nauck MA, Matthews DR, et al. Weight loss with liraglutide, a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue. Diabetes Obes Metab, 2009; 11, 1163−72. doi:  10.1111/j.1463-1326.2009.01158.x
[51] Inoue K, Maeda N, Kashine S, et al. Short-term effects of liraglutide on visceral fat adiposity, appetite, and food preference: a pilot study of obese Japanese patients with type 2 diabetes. Cardiovasc Diabetol, 2011; 10, 109. doi:  10.1186/1475-2840-10-109
[52] Nauck M, Frid A, Hermansen K, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care, 2009; 32, 84−90. doi:  10.2337/dc08-1355
[53] Li CJ, Yu Q, Yu P, et al. Changes in liraglutide-induced body composition are related to modifications in plasma cardiac natriuretic peptides levels in obese type 2 diabetic patients. Cardiovasc Diabetol, 2014; 13, 36. doi:  10.1186/1475-2840-13-36
[54] Alexopoulos N, Katritsis D, Raggi P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis, 2014; 233, 104−12. doi:  10.1016/j.atherosclerosis.2013.12.023
[55] Wensveen FM, Valentic S, Sestan M, et al. The "Big Bang" in obese fat: events initiating obesity-induced adipose tissue inflammation. Eur J Immunol, 2015; 45, 2446−56. doi:  10.1002/eji.201545502
[56] Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol, 2018; 14, 88−98. doi:  10.1038/nrendo.2017.151
[57] Perna S, Mainardi M, Astrone P, et al. 12-month effects of incretins versus SGLT2-Inhibitors on cognitive performance and metabolic profile. A randomized clinical trial in the elderly with type-2 diabetes mellitus. Clin Pharmacol, 2018; 10, 141−51.
[58] Perna S, Guido D, Bologna C, et al. Liraglutide and obesity in elderly: efficacy in fat loss and safety in order to prevent sarcopenia. A perspective case series study. Aging Clin Exp Res, 2016; 28, 1251−7. doi:  10.1007/s40520-015-0525-y
[59] Chaimani A, Salanti G, Leucht S, et al. Common pitfalls and mistakes in the set-up, analysis and interpretation of results in network meta-analysis: what clinicians should look for in a published article. Evid Based Ment Health, 2017; 20, 88−94. doi:  10.1136/eb-2017-102753