[1] |
Kaiser-Kupfer MI, Chan CC, Markello TC, et al. Clinical biochemical and pathologic correlations in Bietti’s crystalline dystrophy. Am J Ophthalmol, 1994; 118, 569−82. doi: 10.1016/S0002-9394(14)76572-9 |
[2] |
Li AR, Jiao XD, Munier FL, et al. Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2. Am J Hum Genet, 2004; 74, 817−26. doi: 10.1086/383228 |
[3] |
Miyata M, Hata M, Ooto S, et al. Choroidal and retinal atrophy of Bietti crystalline dystrophy patients with CYP4V2 mutations compared to retinitis pigmentosa patients with EYS mutations. Retina, 2017; 37, 1193−202. doi: 10.1097/IAE.0000000000001323 |
[4] |
Saatci AO, Doruk HC. An overview of rare and unusual clinical features of Bietti’s crystalline dystrophy. Med Hypothesis Discov Innov Ophthalmol, 2014; 3, 51−6. |
[5] |
Scoles D, Gray DC, Hunter JJ, et al. In-vivo imaging of retinal nerve fiber layer vasculature: imaging-histology comparison. BMC Ophthalmol, 2009; 9, 9. doi: 10.1186/1471-2415-9-9 |
[6] |
Mansoori T, Sivaswamy J, Gamalapati JS, et al. Measurement of radial peripapillary capillary density in the normal human retina using optical coherence tomography angiography. J Glaucoma, 2017; 26, 241−6. doi: 10.1097/IJG.0000000000000594 |
[7] |
Yuzawa M, Mae Y, Matsui M. Bietti’s crystalline retinopathy. Ophthalmic Paediatr Genet, 1986; 7, 9−20. doi: 10.3109/13816818609058037 |
[8] |
İpek ŞC, Ayhan Z, Kadayıfçılar S, et al. Swept-source optical coherence tomography angiography in a patient with Bietti crystalline dystrophy followed for ten years. Turk J Ophthalmol, 2019; 49, 106−8. doi: 10.4274/tjo.galenos.2018.90768 |
[9] |
Fong AMY, Koh A, Lee K, et al. Bietti's crystalline dystrophy in Asians: clinical, angiographic and electrophysiological characteristics. Int Ophthalmol, 2009; 29, 459−70. doi: 10.1007/s10792-008-9266-7 |
[10] |
Rossi S, Testa F, Li AR, et al. An atypical form of Bietti crystalline dystrophy. Ophthalmic Genet, 2011; 32, 118−21. doi: 10.3109/13816810.2011.559653 |
[11] |
Gekka T, Hayashi T, Takeuchi T, et al. CYP4V2 mutations in two Japanese patients with Bietti’s crystalline dystrophy. Ophthalmic Res, 2005; 37, 262−9. doi: 10.1159/000087214 |
[12] |
Miyata M, Oishi A, Hasegawa T, et al. Choriocapillaris flow deficit in Bietti crystalline dystrophy detected using optical coherence tomography angiography. Br J Ophthalmol, 2018; 102, 1208−12. doi: 10.1136/bjophthalmol-2017-311313 |
[13] |
Hirashima T, Miyata M, Ishihara K, et al. Choroidal vasculature in Bietti crystalline dystrophy with CYP4V2 mutations and in retinitis Pigmentosa with EYS mutations. Invest Ophthalmol Vis Sci, 2017; 58, 3871−78. doi: 10.1167/iovs.17-21515 |
[14] |
Demir ST, Yesiltas SK, Kacar H, et al. Optical coherence tomography and optical coherence tomography angiography imaging in Bietti crystalline dystrophy. Ophthalmic Genet, 2020; 41, 194−7. doi: 10.1080/13816810.2020.1750036 |
[15] |
Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep, 2017; 7, 42201. doi: 10.1038/srep42201 |
[16] |
Nesper PL, Fawzi AA. Human parafoveal capillary vascular anatomy and connectivity revealed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci, 2018; 59, 3858−67. doi: 10.1167/iovs.18-24710 |
[17] |
Jia YL, Simonett JM, Wang J, et al. Wide-field OCT angiography investigation of the relationship between radial peripapillary capillary plexus density and nerve fiber layer thickness. Invest Ophthalmol Vis Sci, 2017; 58, 5188−94. doi: 10.1167/iovs.17-22593 |
[18] |
Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol, 2015; 133, 45−50. doi: 10.1001/jamaophthalmol.2014.3616 |
[19] |
Blaauwgeers HG, Holtkamp GM, Rutten H, et al. Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am J Pathol, 1999; 155, 421−8. |
[20] |
Marneros AG, Fan J, Yokoyama Y, et al. Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. Am J Pathol, 2005; 167, 1451−9. doi: 10.1016/S0002-9440(10)61231-X |
[21] |
Sandberg MA, Brockhurst RJ, Gaudio AR, et al. The association between visual acuity and central retinal thickness in retinitis pigmentosa. Invest Ophthalmol Vis Sci, 2005; 46, 3349−54. doi: 10.1167/iovs.04-1383 |
[22] |
Abbouda A, Dubis AM, Webster AR, et al. Identifying characteristic features of the retinal and choroidal vasculature in choroideremia using optical coherence tomography angiography. Eye (Lond), 2018; 32, 563−71. doi: 10.1038/eye.2017.242 |
[23] |
McLeod DS, Grebe R, Bhutto I, et al. Relationship between RPE and choriocapillaris in age-related macular degeneration. Invest Ophthalmol Vis Sci, 2009; 50, 4982−91. doi: 10.1167/iovs.09-3639 |
[24] |
Saint-Geniez M, Kurihara T, Sekiyama E, et al. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl Acad Sci USA, 2009; 106, 18751−6. doi: 10.1073/pnas.0905010106 |
[25] |
Morgan JIW, Han G, Klinman E, et al. High-resolution adaptive optics retinal imaging of cellular structure in choroideremia. Invest Ophthalmol Vis Sci, 2014; 55, 6381−97. doi: 10.1167/iovs.13-13454 |
[26] |
Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology, 1995; 102, 217−29. doi: 10.1016/S0161-6420(95)31032-9 |
[27] |
Arrigo A, Romano F, Parodi MB, et al. Reduced vessel density in deep capillary plexus correlates with retinal layer thickness in choroideremia. Br J Ophthalmol, 2021; 105, 687−93. doi: 10.1136/bjophthalmol-2020-316528 |
[28] |
Bunker CH, Berson EL, Bromley WC, et al. Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol, 1984; 97, 357−65. doi: 10.1016/0002-9394(84)90636-6 |
[29] |
Grover S, Fishman GA, Anderson RJ, et al. Visual acuity impairment in patients with retinitis pigmentosa at age 45 years or older. Ophthalmology, 1999; 106, 1780−5. doi: 10.1016/S0161-6420(99)90342-1 |
[30] |
Berson EL, Sandberg MA, Rosner B, et al. Natural course of retinitis pigmentosa over a three-year interval. Am J Ophthalmol, 1985; 99, 240−51. doi: 10.1016/0002-9394(85)90351-4 |
[31] |
Mastropasqua R, Borrelli E, Agnifili L, et al. Radial peripapillary capillary network in patients with retinitis pigmentosa: an optical coherence tomography angiography study. Front Neurol, 2017; 8, 572. doi: 10.3389/fneur.2017.00572 |
[32] |
Saatci AO, Doruk HC, Yaman A, et al. Spectral domain optical coherence tomographic findings of bietti crystalline dystrophy. J Ophthalmol, 2014; 2014, 739271. |