[1] Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet, 1964; 283, 702−3.
[2] Gao Y, Tie YQ, Zhao LQ, et al. Rapid internal control reference recombinase-aided amplification assays for EBV and CMV detection. Biomed Environ Sci, 2021; 34, 650−5.
[3] Styczynski J, van der Velden W, Fox CP, et al. Management of Epstein-Barr Virus infections and post-transplant lymphoproliferative disorders in patients after allogeneic hematopoietic stem cell transplantation: sixth European Conference on Infections in Leukemia (ECIL-6) guidelines. Haematologica, 2016; 101, 803−11. doi:  10.3324/haematol.2016.144428
[4] Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol, 2001; 1, 75−82. doi:  10.1038/35095584
[5] Babcock GJ, Decker LL, Volk M, et al. EBV persistence in memory B cells in vivo. Immunity, 1998; 9, 395−404. doi:  10.1016/S1074-7613(00)80622-6
[6] Kasahara Y, Yachie A. Cell type specific infection of Epstein-Barr virus (EBV) in EBV-associated hemophagocytic lymphohistiocytosis and chronic active EBV infection. Crit Rev Oncol Hematol, 2002; 44, 283−94. doi:  10.1016/S1040-8428(02)00119-1
[7] Kimura Y, Takada T, Strasberg SM, et al. TG13 current terminology, etiology, and epidemiology of acute cholangitis and cholecystitis. J Hepatobiliary Pancreat Sci, 2013; 20, 8−23. doi:  10.1007/s00534-012-0564-0
[8] Huo L, Jiang MY, Li Q, et al. Novel association of killer cell immunoglobulin-like receptor genes with EBV-infectious diseases in children. Biomed Environ Sci, 2015; 28, 303−7.
[9] Young LS, Murray PG. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene, 2003; 22, 5108−21. doi:  10.1038/sj.onc.1206556
[10] Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer, 2004; 4, 757−68. doi:  10.1038/nrc1452
[11] Arai A. Advances in the study of chronic active Epstein-Barr virus infection: clinical features under the 2016 WHO classification and mechanisms of development. Front Pediatr, 2019; 7, 14. doi:  10.3389/fped.2019.00014
[12] Lindsay J, Yong MK, Greenwood M, et al. Epstein-Barr virus related post-transplant lymphoproliferative disorder prevention strategies in allogeneic hematopoietic stem cell transplantation. Rev Med Virol, 2020; 30, e2108.
[13] Jaiswal SR, Bhakuni P, Bhagwati G, et al. Alterations in NKG2A and NKG2C subsets of natural killer cells following Epstein-Barr virus reactivation in CTLA4Ig-based haploidentical transplantation is associated with increased chronic graft-versus-host disease. Transplantation, 2020; 104, e23−30. doi:  10.1097/TP.0000000000002941
[14] van Esser JWJ, van der Holt B, Meijer E, et al. Epstein-Barr virus (EBV) reactivation is a frequent event after allogeneic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell-depleted SCT. Blood, 2001; 98, 972−8. doi:  10.1182/blood.V98.4.972
[15] Xu LP, Zhang CL, Mo XD, et al. Epstein-Barr virus-related post-transplantation lymphoproliferative disorder after unmanipulated human leukocyte antigen haploidentical hematopoietic stem cell transplantation: incidence, risk factors, treatment, and clinical outcomes. Biol Blood Marrow Transplant, 2015; 21, 2185−91. doi:  10.1016/j.bbmt.2015.07.035
[16] van Esser JWJ, Niesters HGM, van der Holt B, et al. Prevention of Epstein-Barr virus-lymphoproliferative disease by molecular monitoring and preemptive rituximab in high-risk patients after allogeneic stem cell transplantation. Blood, 2002; 99, 4364−9. doi:  10.1182/blood.V99.12.4364
[17] Cohen J, Gandhi M, Naik P, et al. Increased incidence of EBV-related disease following paediatric stem cell transplantation with reduced-intensity conditioning. Br J Haematol, 2005; 129, 229−39. doi:  10.1111/j.1365-2141.2005.05439.x
[18] Arber DA, Kamel OW, van de Rijn M, et al. Frequent presence of the Epstein-Barr virus in inflammatory pseudotumor. Hum Pathol, 1995; 26, 1093−8. doi:  10.1016/0046-8177(95)90271-6
[19] Iezzoni JC, Gaffey MJ, Weiss LM. The role of Epstein-Barr virus in lymphoepithelioma-like carcinomas. Am J Clin Pathol, 1995; 103, 308−15. doi:  10.1093/ajcp/103.3.308
[20] Lee ES, Locker J, Nalesnik M, et al. The association of Epstein-Barr virus with smooth-muscle tumors occurring after organ transplantation. New Engl J Med, 1995; 332, 19−25. doi:  10.1056/NEJM199501053320104
[21] Rezk SA, Weiss LM. Epstein-Barr virus-associated lymphoproliferative disorders. Hum Pathol, 2007; 38, 1293−304. doi:  10.1016/j.humpath.2007.05.020
[22] Yamamoto N, Tokunaga M, Uemura Y, et al. Epstein-Barr virus and gastric remnant cancer. Cancer, 1994; 74, 805−9. doi:  10.1002/1097-0142(19940801)74:3<805::AID-CNCR2820740304>3.0.CO;2-L
[23] Tabibzadeh A, Karbalaie Niya MH, Esghaei M, et al. Molecular epidemiology of Epstein-Barr virus (EBV) in patients with hematologic malignancies. Asian Pac J Cancer Prev, 2020; 21, 693−8. doi:  10.31557/APJCP.2020.21.3.693
[24] Curtis RE, Travis LB, Rowlings PA, et al. Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood, 1999; 94, 2208−16.
[25] Landgren O, Gilbert ES, Rizzo JD, et al. Risk factors for lymphoproliferative disorders after allogeneic hematopoietic cell transplantation. Blood, 2009; 113, 4992−5001. doi:  10.1182/blood-2008-09-178046
[26] Reddy N, Rezvani K, Barrett AJ, et al. Strategies to prevent EBV reactivation and posttransplant lymphoproliferative disorders (PTLD) after allogeneic stem cell transplantation in high-risk patients. Biol Blood Marrow Transplant, 2011; 17, 591−7. doi:  10.1016/j.bbmt.2010.08.007
[27] Gottschalk S, Rooney CM, Heslop HE. Post-transplant lymphoproliferative disorders. Annu Rev Med, 2005; 56, 29−44. doi:  10.1146/annurev.med.56.082103.104727
[28] Peric Z, Cahu X, Chevallier P, et al. Features of Epstein-Barr Virus (EBV) reactivation after reduced intensity conditioning allogeneic hematopoietic stem cell transplantation. Leukemia, 2011; 25, 932−8. doi:  10.1038/leu.2011.26
[29] Riedel T, Rodriguez-Emmenegger C, de los Santos Pereira A, et al. Diagnosis of Epstein-Barr virus infection in clinical serum samples by an SPR biosensor assay. Biosens Bioelectron, 2014; 55, 278−84. doi:  10.1016/j.bios.2013.12.011
[30] Phaneuf CR, Oh K, Pak N, et al. Sensitive, microliter PCR with consensus degenerate primers for Epstein Barr virus amplification. Biomed Microdevices, 2013; 15, 221−31. doi:  10.1007/s10544-012-9720-1
[31] Hsieh HY, Chang R, Huang YY, et al. Continuous polymerase chain reaction microfluidics integrated with a gold-capped nanoslit sensing chip for Epstein-Barr virus detection. Biosens Bioelectron, 2022; 195, 113672. doi:  10.1016/j.bios.2021.113672
[32] Cui A, Wang SL, Zhang Q, et al. Development of a multiplex one-step real-time RT-PCR assay for the simultaneous detection of eight viruses associated with febrile rash illnesses. Biosaf Health, 2020; 2, 89−94. doi:  10.1016/j.bsheal.2020.04.003
[33] Li Q, Rane L, Poiret T, et al. Both high and low levels of cellular Epstein-Barr virus DNA in blood identify failure after hematologic stem cell transplantation in conjunction with acute GVHD and type of conditioning. Oncotarget, 2016; 7, 30230−40. doi:  10.18632/oncotarget.8803