[1] Gudkov SV, Shilyagina NY, Vodeneev VA, et al. Targeted radionuclide therapy of human tumors. Int J Mol Sci, 2015; 17, 33. doi:  10.3390/ijms17010033
[2] David SS, O'Shea VL, Kundu S. Base-excision repair of oxidative DNA damage. Nature, 2007; 447, 941−50. doi:  10.1038/nature05978
[3] Johansen ME, Muller JG, Xu X, et al. Oxidatively induced DNA-protein cross-linking between single-stranded binding protein and oligodeoxynucleotides containing 8-oxo-7,8-dihydro-2'-deoxyguanosine. Biochemistry, 2005; 44, 5660−71. doi:  10.1021/bi047580n
[4] Kawanishi S, Oikawa S. Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci, 2004; 1019, 278−84. doi:  10.1196/annals.1297.047
[5] Marmiy NV, Esipov D. Biological role of 8-oxo-2'-deoxyguanosine. Moscow Univ Biol Sci Bull, 2015; 70, 168−172.
[6] Perillo B, Ombra MN, Bertoni A, et al. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen_induced gene expression. Science, 2008; 319, 202−6. doi:  10.1126/science.1147674
[7] Hong GU, Kim NG, Jeoung D, et al. Anti_CD40 Ab_ or 8_oxo_dG_enhanced Treg cells reduce development of experimental autoimmune encephalomyelitis via down_regulatin migration and activation of mast cells. J Neuroimmunol, 2013; 260, 60−73. doi:  10.1016/j.jneuroim.2013.04.002
[8] Stebbeds WJ, Lunec J, Larcombe LD. An in silico study of the differential effect of oxidation on two biologically relevant G_qudruplexes possible implications in oncogene expression. PLoS One, 2012; 7, e43735. doi:  10.1371/journal.pone.0043735
[9] Ziech D, Franco R, Pappa A. Reactive oxygen species (ROS)-induced genetic and epigenetic alterations in human carcinogenesis. Mut Res Gen Tox En, 2011; 711, 167−73.
[10] Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Research, 1992; 52, 6394−6.
[11] Yahyapour R, Motevaseli E, Rezaeyan A, et al. Mechanisms of radiation bystander and non-targeted effects: Implications to radiation carcinogenesis and radiotherapy. Curr Radiopharm, 2018; 11, 34−45. doi:  10.2174/1874471011666171229123130
[12] Tharmalingam S, Sreetharan S, Kulesza AV, et al. Low-dose ionizing radiation exposure, oxidative stress and epigenetic programing of health and disease. Radiat Res, 2017; 188, 525−38. doi:  10.1667/RR14587.1
[13] Robertson KD. DNA methylation and human disease. Nat Rev Genet, 2005; 6, 597−610.
[14] Ghavifekr Fakhr M, Farshdousti Hagh M, Shanehbandi D, et al. DNA methylation pattern as important epigenetic criterion in cancer. Genet Res Int, 2013; 2013, 317569.
[15] Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet, 2008; 9, 465−76.
[16] Miousse IR, Kutanzi KR, Koturbash I. Effects of ionizing radiation on DNA methylation: From experimental biology to clinical applications. Int J Radiat Biol, 2017; 93, 457−9. doi:  10.1080/09553002.2017.1287454
[17] Anwar SL, Wulaningsih W, Lehmann U. Transposable elements in human cancer: causes and consequences of deregulation. Int J Mol Sci, 2017; 18, 974. doi:  10.3390/ijms18050974
[18] Ng JM, Yu J. Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer. Int J Mol Sci, 2015; 16, 2472−96. doi:  10.3390/ijms16022472
[19] Salta S, Nunes SP, Fontes-Sousa M, et al. A DNA methylation-based test for breast cancer detection in circulating cell-free DNA. J Clin Med, 2018; 7, 420. doi:  10.3390/jcm7110420
[20] Bozkurt S, Özkan T, Özmen F, et al. The roles of epigenetic modifications of proapoptotic BID and BIM genes in imatinib-resistant chronic myeloid leukemia cells. Hematology, 2013; 18, 217−23. doi:  10.1179/1607845412Y.0000000056
[21] Yamashita N, Tokunaga E, Kitao H, et al. Epigenetic inactivation of BRCA1 through promoter hypermethylation and its clinical importance in triple-negative breast cancer. Clin Cancer Breast, 2015; 15, 498−504. doi:  10.1016/j.clbc.2015.06.009
[22] Khatami F, Larijani B, Heshmat R, et al. Meta analysis of promoter methylation in eight tumor-suppressor genes and its association with the risk of thyroid cancer. Plos One, 2017; 12, e0184892. doi:  10.1371/journal.pone.0184892
[23] Pfeifer GP, Rauch TA. DNA methylation patterns in lung carcinomas. Semin Cancer Biol, 2009; 19, 181−7. doi:  10.1016/j.semcancer.2009.02.008
[24] Heidari N, Abroun S, Bertacchini J, et al. Significance of inactivated genes in leukemia: Pathogenesis and prognosis. Cell J, 2017; 19, 9−26.
[25] Nagarajan RP, Costello JF. Molecular epigenetics and genetics in neuro-oncology. Neurotherapeutics, 2009; 6, 436−46. doi:  10.1016/j.nurt.2009.04.002
[26] Rodríguez-Rodero S, Fernández AF, Fernández-Morera JL, et al. DNA methylation signatures identify biologically distinct thyroid cancer subtypes. J Clin Endocrinol Metab, 2013; 98, 2811−21. doi:  10.1210/jc.2012-3566
[27] Bao X, Anastasov N, Wang Y, et al. A novel epigenetic signature for overall survival prediction in patients with breast cancer. J Transl Med, 2019; 20, 380.
[28] Moghazy TF, ElAttar HA, Eldeeb MK, et al. Methylation of glutathione-S-transferase P1 promotor in Egyptian females with breast cancer. Asian Pac J Cancer Prev, 2019; 20, 2523−30. doi:  10.31557/APJCP.2019.20.8.2523
[29] Guan H, Ji M, Hou P, et al. Hypermethylation of the DNA mismatch repair gene hMLH1 and its association with lymph node metastasis and T1799A BRAF mutation in patients with papillary thyroid cancer. Cancer, 2008; 113, 247−55. doi:  10.1002/cncr.23548
[30] Kazim Z, Wahabi K, Perwez A, et al. PTEN genetic and epigenetic alterations define distinct subgroups in North Indian breast cancer patients. Asian Pac J Cancer Prev, 2019; 20, 269−76. doi:  10.31557/APJCP.2019.20.1.269
[31] Qi M, Xiong X. Promoter hypermethylation of RARβ2, DAPK, hMLH1, p14, and p15 is associated with progression of breast cancer: A PRISMA-compliant meta-analysis. Medicine, 2018; 97, e13666. doi:  10.1097/MD.0000000000013666
[32] Shan M, Zhang L, Liu Y, et al. DNA methylation profiles and their diagnostic utility in BC. Dis Markers, 2019; 2019, 6328503.
[33] Matsui S, Kagara N, Mishima C, et al. Methylation of the SEPT9_v2 promoter as a novel marker for the detection of circulating tumor DNA in breast cancer patients. Oncol Rep, 2016; 36, 2225−35. doi:  10.3892/or.2016.5004
[34] Panagopoulou M, Karaglani M, Balgkouranidou I, et al. Circulating cell-free DNA in breast cancer: size profiling, levels, and methylation patterns lead to prognostic and predictive classifiers. Oncogene, 2019; 38, 3387−401. doi:  10.1038/s41388-018-0660-y
[35] Kovalchuk O, Burke P, Besplug J, a l. Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose Xray- irradiation. Mutat Res, 2004; 548, 75−84. doi:  10.1016/j.mrfmmm.2003.12.016
[36] Newman MR, Sykes PJ, Blyth BJ, et al. A single whole-body low dose X-irradiation does not affect L1, B1 and IAP repeat element DNA methylation longitudinally. PloS One, 2014; 9, e93016. doi:  10.1371/journal.pone.0093016
[37] Ye S, Yuan D, Xie Y, et al. Role of DNA methylation in long-term low-dose gamma-rays induced adaptive response in human B lymphoblast cells. Int J Radiat Biol, 2013; 89, 898−906. doi:  10.3109/09553002.2013.806832
[38] Wang J, Zhang Y, Xu K, et al. Genome-wide screen of DNA methylation changes induced by low dose X-Ray radiation in mice. PLoS One, 2014; 10, e90804.
[39] Pogribny I, Koturbash I, Tryndyak V, et al. Fractionated low-dose radiation exposure leads to accumulation of DNA damage and profound alterations in DNA and histone methylation in the murine thymus. Mol Cancer Res, 2005; 3, 553−61. doi:  10.1158/1541-7786.MCR-05-0074
[40] Lin EC. Radiation risk from medical imaging eugene. Mayo Clin Proc, 2010; 85, 1142−6. doi:  10.4065/mcp.2010.0260
[41] Jones JG, Mills CN, Mogensen MA, Lee CI. Radiation dose from medical imaging: a primer for emergency physicians. West J Emerg Med, 2012; 13, 202−10. doi:  10.5811/westjem.2011.11.6804
[42] Verdun FR, Bochud F, Gudinchet F, et al. Radiation risk: what you should know to tell your patient. Radiographics, 2008; 28, 1807−16. doi:  10.1148/rg.287085042
[43] Fazel R, Krumholz HM, Wang Y, et al. Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med, 2009; 361, 849−57. doi:  10.1056/NEJMoa0901249
[44] Sodickson A, Baeyens PF, Andriole KP, et al. Recurrent CT. Cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology, 2009; 251, 175−84. doi:  10.1148/radiol.2511081296
[45] Miglioretti DL, Johnson E, Williams A, et al. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr, 2013; 167, 700−7. doi:  10.1001/jamapediatrics.2013.311
[46] Brenner D, Elliston C, Hall E, et al. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol, 2001; 176, 289−96. doi:  10.2214/ajr.176.2.1760289
[47] Chodick G, Ronckers CM, Shalev V, et al. Excess lifetime cancer mortality risk attributable to radiation exposure from computed tomography examinations in children. Isr Med Assoc J, 2007; 9, 584−7.
[48] Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: retrospective cohort study. Lancet, 2012; 380, 499−505. doi:  10.1016/S0140-6736(12)60815-0
[49] Dutkowsky JP, Shearer D, Schepps B, et al. Radiation exposure to patients receiving routine scoliosis radiography measured at depth in an anthropomorphic phantom. J Pediatr Orthop, 1990; 10, 532−4. doi:  10.1097/01241398-199010040-00021
[50] Doody MM, Lonstein JE, Stovall M, et al. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine, 2000; 25, 2052−63. doi:  10.1097/00007632-200008150-00009
[51] Mazonakis M, Tzedakis A, Damilakis J, et al. Thyroid dose from common head and neck CT examinations in children: is there an excess risk for thyroid cancer induction? Eur Radiol, 2007; 17, 1352−7. doi:  10.1007/s00330-006-0417-9
[52] Karlsson P, Holmberg E, Lundell M, et al. Intracranial tumors after exposure to ionizing radiation during infancy: a pooled analysis of two Swedish cohorts of 28,008 infants with skin hemangioma. Radiat Res, 1998; 150, 357−64. doi:  10.2307/3579984
[53] Sadetzki S, Chetrit A, Freedman L, et al. Long-term follow-up for brain tumor development after childhood exposure to ionizing radiation for tinea capitis. Radiat Res, 2005; 163, 424−432. doi:  10.1667/RR3329
[54] Meulepas JM, Ronckers CM, Smets AMJB, et al. Radiation exposure from pediatric CT scans and subsequent cancer risk in the netherlands. J Natl Cancer Inst, 2019; 111, 256−63. doi:  10.1093/jnci/djy104
[55] Eisenberg MJ, Afilalo J, Lawler PR, et al. Cancer risk related to low-dose ionizing radiation from cardiac imaging in patients after acute myocardial infarction. CMAJ, 2011; 183, 430−6. doi:  10.1503/cmaj.100463
[56] Metso S, Auvinen A, Huhtala H, et al. Increased cancer incidence after radioiodine treatment for hyperthyroidism. Cancer, 2007; 109, 1972−9. doi:  10.1002/cncr.22635
[57] NRC (National Research Council). Health Risks from Exposure to low levels of ionizing radiation (BEIR VII). Washington, DC: The National Academies Press, 2006.
[58] Yoshinaga S, Mabuchi K, Sigurdson AJ, et al. Cancer risks among radiologists and radiologic technologists: review of epidemiologic studies. Radiology, 2004; 233, 313−21. doi:  10.1148/radiol.2332031119
[59] Ronckers CM, Doody MM, Lonstein JE, et al. Multiple diagnostic X-rays for spine deformities and risk of breast cancer. Cancer Epidemiol Biomarkers Prev, 2008; 17, 605−13. doi:  10.1158/1055-9965.EPI-07-2628
[60] Himmetoglu S, Guven MF, Bilsel N, et al. DNA damage in children with scoliosis following X-ray exposure. Minerva Pediatr, 2015; 67, 245−9.
[61] Doody MM, Freedman DM, Alexander BH, et al. Breast cancer incidence in U.S. radiologic technologists. Cancer, 2006; 106, 2707−15.
[62] Loree J, Koturbash I, Kutanzi K, et al. Radiation-induced molecular changes in rat mammary tissue: Possible implications for radiation-induced carcinogenesis. Int J Radiat Biol, 2006; 82, 805−15. doi:  10.1080/09553000600960027
[63] Park SY, Seo AN, Jung HY, et al. Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. PLoS One, 2014; 9, e100429. doi:  10.1371/journal.pone.0100429
[64] Dincer Y, Akkaya C. From DNA methylation signature in circulating DNA to cancer detection and monitoring. In: Hiroto S. Watanabe (editör). Horizons in Cancer Research, Volume 66, New York, USA: Nova Science Publishers; 2017; 122-3.
[65] McCunney RJ, Li J. Radiation risks in lung cancer screening programs. Chest, 2014; 145, 618−24. doi:  10.1378/chest.13-1420
[66] Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene, 2002; 21, 5400−13. doi:  10.1038/sj.onc.1205651
[67] Abdel-Wahab O, Mullally A, Hedvat C, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood, 2009; 114, 144−7.
[68] Giotopoulos G, McCormick C, Cole C, et al. DNA methylation during mouse hemopoietic differentiation and radiation-induced leukemia. Exp Hematol, 2006; 34, 1462−70. doi:  10.1016/j.exphem.2006.06.008
[69] Han MA, Kim JH. Diagnostic X-Ray exposure and thyroid cancer risk: Systematic review and meta-analysis. Thyroid, 2018; 28, 220−8. doi:  10.1089/thy.2017.0159
[70] Hu S, Liu D, Tufano RP, et al. Association of aberrant methylation of tumor suppressor genes with tumor aggressiveness and BRAF mutation in papillary thyroid cancer. Int J Cancer, 2006; 119, 2322−9. doi:  10.1002/ijc.22110
[71] Klein Hesselink EN, Zafon C, Villalmanzo N, et al. Increased global DNA hypomethylation in distant metastatic and dedifferentiated thyroid cancer. J Clin Endocrinol Metab, 2018; 103, 397−06. doi:  10.1210/jc.2017-01613
[72] Penha RCC, Lima SCS, Boroni M, et al. Intrinsic LINE-1 hypomethylation and decreased Brca1 expression are associated with DNA repair delay in irradiated thyroid cells. Radiat Res, 2017; 188, 144−55. doi:  10.1667/RR14532.1
[73] Braganza MZ, Kitahara CM, Berrington de González A, et al. Ionizing radiation and the risk of brain and central nervous system tumors: a systematic review. Neuro Oncol, 2012; 14, 1316−24. doi:  10.1093/neuonc/nos208
[74] Ohka F, Natsume A, Motomura K, et al. The global DNA methylation surrogate LINE-1 methylation is correleted with MGMT methylation and is a better prognostic factor for glioma. PLoS One, 2011; 6, e23332. doi:  10.1371/journal.pone.0023332
[75] Cadieux B, Ching TT, VandenBerg SR, et al. Genome wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res, 2006; 66, 8469−76. doi:  10.1158/0008-5472.CAN-06-1547
[76] Barciszewska AM, Nowak S, Naskręt-Barciszewska MZ. The Degree of global DNA hypomethylation in peripheral blood correlates with that in matched tumor tissues in several neoplasia. PLoS One, 2014; 9, e92599. doi:  10.1371/journal.pone.0092599
[77] Koturbash I, Jadavji NM, Kutanzi K, et al. Fractionated low-dose exposure to ionizing radiation leads to DNA damage, epigenetic dysregulation, and behavioral impairment. Nviron Epigenet, 2017; 2, 1−13.