[1] Feldman EL, Goutman SA, Petri S, et al. Amyotrophic lateral sclerosis. Lancet, 2022; 400, 1363−80. doi:  10.1016/S0140-6736(22)01272-7
[2] Shefner JM, Al-Chalabi A, Baker MR, et al. A proposal for new diagnostic criteria for ALS. Clin Neurophysiol, 2020; 131, 1975−8. doi:  10.1016/j.clinph.2020.04.005
[3] Mejzini R, Flynn LL, Pitout IL, et al. ALS genetics, mechanisms, and therapeutics: where are we now?. Front Neurosci, 2019; 13, 1310. doi:  10.3389/fnins.2019.01310
[4] Scott A. Drug therapy: on the treatment trail for ALS. Nature, 2017; 550, S120−1.
[5] Zaccai S, Nemirovsky A, Lerner L, et al. CD4 T-cell aging exacerbates neuroinflammation in a late-onset mouse model of amyotrophic lateral sclerosis. J Neuroinflammation, 2024; 21, 17. doi:  10.1186/s12974-023-03007-1
[6] Lu T, Luo LJ, Yang J, et al. Circulating levels of T-cell traits and the risk of amyotrophic lateral sclerosis: a Mendelian randomization study. Mol Neurobiol, 2024; 61, 10529−37. doi:  10.1007/s12035-024-04226-0
[7] Yazdani S, Seitz C, Cui C, et al. T cell responses at diagnosis of amyotrophic lateral sclerosis predict disease progression. Nat Commun, 2022; 13, 6733. doi:  10.1038/s41467-022-34526-9
[8] Beers DR, Zhao WH, Wang JH, et al. ALS patients' regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. JCI Insight, 2017; 2, e89530. doi:  10.1172/jci.insight.89530
[9] Jin MM, Günther R, Akgün K, et al. Peripheral proinflammatory Th1/Th17 immune cell shift is linked to disease severity in amyotrophic lateral sclerosis. Sci Rep, 2020; 10, 5941. doi:  10.1038/s41598-020-62756-8
[10] Rolfes L, Schulte-Mecklenbeck A, Schreiber S, et al. Amyotrophic lateral sclerosis patients show increased peripheral and intrathecal T-cell activation. Brain Commun, 2021; 3, fcab157. doi:  10.1093/braincomms/fcab157
[11] Ramachandran S, Grozdanov V, Leins B, et al. Low T-cell reactivity to TDP-43 peptides in ALS. Front Immunol, 2023; 14, 1193507. doi:  10.3389/fimmu.2023.1193507
[12] Sheean RK, McKay FC, Cretney E, et al. Association of regulatory T-cell expansion with progression of amyotrophic lateral sclerosis: a study of humans and a transgenic mouse model. JAMA Neurol, 2018; 75, 681−9. doi:  10.1001/jamaneurol.2018.0035
[13] Yu WY, He J, Cai XY, et al. Neuroimmune crosstalk between the peripheral and the central immune system in amyotrophic lateral sclerosis. Front Aging Neurosci, 2022; 14, 890958. doi:  10.3389/fnagi.2022.890958
[14] Zhu YH, Li M, Wang HF, et al. Mendelian randomization identifies genetically supported drug targets for amyotrophic lateral sclerosis and frontotemporal dementia. Mol Neurobiol, 2024; 61, 3809−18. doi:  10.1007/s12035-023-03817-7
[15] Van Rheenen W, Van Der Spek RAA, Bakker MK, et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat Genet, 2021; 53, 1636−48. doi:  10.1038/s41588-021-00973-1
[16] Zhang S, Cooper-Knock J, Weimer AK, et al. Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis. Neuron, 2022; 110, 992-1008. e11.
[17] Wu XL, Wang KL, Li QH, et al. Combining single-cell RNA sequencing and mendelian randomization to explore novel drug targets for Parkinson's Disease. Mol Neurobiol, 2025; 62, 7380−92. doi:  10.1007/s12035-025-04700-3
[18] Itou T, Fujita K, Okuzono Y, et al. Th17 and effector CD8 T cells relate to disease progression in amyotrophic lateral sclerosis: a case control study. J Neuroinflammation, 2024; 21, 331. doi:  10.1186/s12974-024-03327-w
[19] Wang Z, Xie LJ, Ding GH, et al. Single-cell RNA sequencing of peripheral blood mononuclear cells from acute Kawasaki disease patients. Nat Commun, 2021; 12, 5444. doi:  10.1038/s41467-021-25771-5
[20] Szabo PA, Levitin HM, Miron M, et al. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nat Commun, 2019; 10, 4706. doi:  10.1038/s41467-019-12464-3
[21] Hashimoto K, Kouno T, Ikawa T, et al. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc Natl Acad Sci USA, 2019; 116, 24242−51. doi:  10.1073/pnas.1907883116
[22] Võsa U, Claringbould A, Westra HJ, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet, 2021; 53, 1300−10. doi:  10.1038/s41588-021-00913-z
[23] Nicolas A, Kenna KP, Renton AE, et al. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron, 2018; 97, 1267−88. doi:  10.1016/j.neuron.2018.02.027
[24] Street K, Risso D, Fletcher RB, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics, 2018; 19, 477. doi:  10.1186/s12864-018-4772-0
[25] Jin SQ, Guerrero-Juarez CF, Zhang LH, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun, 2021; 12, 1088. doi:  10.1038/s41467-021-21246-9
[26] Bu DC, Luo HT, Huo PP, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res, 2021; 49, W317−25. doi:  10.1093/nar/gkab447
[27] Del Greco MF, Minelli C, Sheehan NA, et al. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med, 2015; 34, 2926−40. doi:  10.1002/sim.6522
[28] Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol, 2017; 32, 377−89. doi:  10.1007/s10654-017-0255-x
[29] Hemani G, Tilling K, Smith GD. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet, 2017; 13, e1007081. doi:  10.1371/journal.pgen.1007081
[30] Giambartolomei C, Vukcevic D, Schadt EE, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet, 2014; 10, e1004383. doi:  10.1371/journal.pgen.1004383
[31] Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics, 2019; 35, 4851−3. doi:  10.1093/bioinformatics/btz469
[32] Van Rheenen W, Diekstra FP, Harschnitz O, et al. Whole blood transcriptome analysis in amyotrophic lateral sclerosis: a biomarker study. PLoS One, 2018; 13, e0198874. doi:  10.1371/journal.pone.0198874
[33] Staats KA, Borchelt DR, Tansey MG, et al. Blood-based biomarkers of inflammation in amyotrophic lateral sclerosis. Mol Neurodegener, 2022; 17, 11. doi:  10.1186/s13024-022-00515-1
[34] Grassano M, Manera U, De Marchi F, et al. The role of peripheral immunity in ALS: a population-based study. Ann Clin Transl Neurol, 2023; 10, 1623−32. doi:  10.1002/acn3.51853
[35] Yildiz O, Schroth J, Tree T, et al. Senescent-like blood lymphocytes and disease progression in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm, 2022; 10, e200042. doi:  10.1212/nxi.0000000000200042
[36] Appel SH, Beers DR, Zhao WH. Amyotrophic lateral sclerosis is a systemic disease: peripheral contributions to inflammation-mediated neurodegeneration. Curr Opin Neurol, 2021; 34, 765−72. doi:  10.1097/WCO.0000000000000983
[37] Henkel JS, Beers DR, Zhao WH, et al. Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol, 2009; 4, 389−98. doi:  10.1007/s11481-009-9171-5
[38] Chen LX, Zhang MD, Xu HF, et al. Single-nucleus RNA sequencing reveals the spatiotemporal dynamics of disease-associated microglia in amyotrophic lateral sclerosis. Research, 2024; 7, 0548. doi:  10.34133/research.0548
[39] Tsai CP, Lin FC, Lee JKW, et al. Aspirin use associated with amyotrophic lateral sclerosis: a total population-based case-control study. J Epidemiol, 2015; 25, 172−7. doi:  10.2188/jea.JE20140070
[40] Chang MC, Kwak SG, Park JS, et al. The effectiveness of nonsteroidal anti-inflammatory drugs and acetaminophen in reduce the risk of amyotrophic lateral sclerosis? A meta-analysis. Sci Rep, 2020; 10, 14759. doi:  10.1038/s41598-020-71813-1
[41] Banerjee R, Mosley RL, Reynolds AD, et al. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice. PLoS One, 2008; 3, e2740. doi:  10.1371/journal.pone.0002740
[42] Tiberti S, Catozzi C, Croci O, et al. GZMKhigh CD8+ T effector memory cells are associated with CD15high neutrophil abundance in non-metastatic colorectal tumors and predict poor clinical outcome. Nat Commun, 2022; 13, 6752. doi:  10.1038/s41467-022-34467-3
[43] Van Leeuwen EMM, Remmerswaal EBM, Vossen MTM, et al. Emergence of a CD4+CD28- granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J Immunol, 2004; 173, 1834−41. doi:  10.4049/jimmunol.173.3.1834
[44] Silva MTT, Leite ACC, Alamy AH, et al. ALS syndrome in HTLV-I infection. Neurology, 2005; 65, 1332−3. doi:  10.1212/01.wnl.0000180962.47653.5e
[45] Celeste DB, Miller MS. Reviewing the evidence for viruses as environmental risk factors for ALS: a new perspective. Cytokine, 2018; 108, 173−8. doi:  10.1016/j.cyto.2018.04.010
[46] Chen JX, Xie JT, Deng FY, et al. Expansion of peripheral cytotoxic CD4+ T cells in Alzheimer's disease: new insights from multi-omics evidence. Genomics, 2025; 117, 110976. doi:  10.1016/j.ygeno.2024.110976
[47] Cenerenti M, Saillard M, Romero P, et al. The era of cytotoxic CD4 T cells. Front Immunol, 2022; 13, 867189. doi:  10.3389/fimmu.2022.867189
[48] Coque E, Salsac C, Espinosa-Carrasco G, et al. Cytotoxic CD8+ T lymphocytes expressing ALS-causing SOD1 mutant selectively trigger death of spinal motoneurons. Proc Natl Acad Sci USA, 2019; 116, 2312−7. doi:  10.1073/pnas.1815961116
[49] Price R, Mercuri NB, Ledonne A. Emerging roles of Protease-Activated Receptors (PARs) in the modulation of synaptic transmission and plasticity. Int J Mol Sci, 2021; 22, 869. doi:  10.3390/ijms22020869
[50] Ossovskaya VS, Bunnett NW. Protease-activated receptors: contribution to physiology and disease. Physiol Rev, 2004; 84, 579−621. doi:  10.1152/physrev.00028.2003
[51] Rohatgi T, Sedehizade F, Reymann KG, et al. Protease-activated receptors in neuronal development, neurodegeneration, and neuroprotection: thrombin as signaling molecule in the brain. Neuroscientist, 2004; 10, 501−12. doi:  10.1177/1073858404269955
[52] Preglej T, Ellmeier W. CD4+ cytotoxic T cells - phenotype, function and transcriptional networks controlling their differentiation pathways. Immunol Lett, 2022; 247, 27−42. doi:  10.1016/j.imlet.2022.05.001
[53] Elyahu Y, Hekselman I, Eizenberg-Magar I, et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci Adv, 2019; 5, eaaw8330. doi:  10.1126/sciadv.aaw8330
[54] Yan S, Si Y, Zhou WY, et al. Single-cell transcriptomics reveals the interaction between peripheral CD4+ CTLs and mesencephalic endothelial cells mediated by IFNG in Parkinson's disease. Comput Biol Med, 2023; 158, 106801. doi:  10.1016/j.compbiomed.2023.106801
[55] Tong H, Wang L, Zhang KF, et al. S100A6 activates Kupffer cells via the p-P38 and p-JNK pathways to induce inflammation, mononuclear/macrophage infiltration sterile liver injury in mice. Inflammation, 2023; 46, 534−54. doi:  10.1007/s10753-022-01750-w
[56] Stulı́k J, Österreicher J, Koupilová K, et al. Differential expression of the Ca2+ binding S100A6 protein in normal, preneoplastic and neoplastic colon mucosa. Eur J Cancer, 2000; 36, 1050−9. doi:  10.1016/S0959-8049(00)00043-5
[57] Wang XH, Zhang LH, Zhong XY, et al. S100A6 overexpression is associated with poor prognosis and is epigenetically up-regulated in gastric cancer. Am J Pathol, 2010; 177, 586−97. doi:  10.2353/ajpath.2010.091217
[58] He XG, Xu XL, Khan AQ, et al. High expression of S100A6 predicts unfavorable prognosis of lung squamous cell cancer. Med Sci Monit, 2017; 23, 5011−7. doi:  10.12659/msm.904279
[59] Deng XJ, Yang XH, Gan ZH, et al. Identification of five NK cell-related hub genes in COPD using single-cell RNA sequencing analysis. J Inflamm Res, 2025; 18, 2169−83. doi:  10.2147/JIR.S491298
[60] Rossi S, Milani M, Valle ID, et al. Transcriptomic profiling of symptomatic and end-stage SOD1-G93A transgenic mice reveals extracellular matrix components as key players in ALS pathogenesis. Biochim Biophys Acta Mol Basis Dis, 2025; 1871, 167707. doi:  10.1016/j.bbadis.2025.167707
[61] Hoyaux D, Boom A, Van Den Bosch L, et al. S100A6 overexpression within astrocytes associated with impaired axons from both ALS mouse model and human patients. J Neuropathol Exp Neurol, 2002; 61, 736−44. doi:  10.1093/jnen/61.8.736
[62] Botelho HM, Leal SS, Cardoso I, et al. S100A6 amyloid fibril formation is calcium-modulated and enhances superoxide dismutase-1 (SOD1) aggregation. J Biol Chem, 2012; 287, 42233−42. doi:  10.1074/jbc.M112.396416
[63] Garo LP, Ajay AK, Fujiwara M, et al. Smad7 controls immunoregulatory PDL2/1-PD1 signaling in intestinal inflammation and autoimmunity. Cell Rep, 2019; 28, 3353-66. e5.
[64] Liu CL, Wu JH, Li M, et al. Smad7 in the hippocampus contributes to memory impairment in aged mice after anesthesia and surgery. J Neuroinflammation, 2023; 20, 175. doi:  10.1186/s12974-023-02849-z
[65] Kleiter I, Song J, Lukas D, et al. Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain, 2010; 133, 1067−81. doi:  10.1093/brain/awq039
[66] Li ZZ, Zhang YZ, Li DX, et al. Microglial upregulation of CD109 expression in spinal cord of amyotrophic lateral sclerosis mouse model and its role in modulating inflammation and TGFβ/SMAD pathway. Neuroscience, 2025; 564, 202−13. doi:  10.1016/j.neuroscience.2024.11.053
[67] Zattoni M, Mearelli M, Vanni S, et al. Serpin signatures in prion and Alzheimer's Diseases. Mol Neurobiol, 2022; 59, 3778−99. doi:  10.1007/s12035-022-02817-3
[68] Burgener SS, Leborgne NGF, Snipas SJ, et al. Cathepsin G inhibition by Serpinb1 and Serpinb6 prevents programmed necrosis in neutrophils and monocytes and reduces GSDMD-driven inflammation. Cell Rep, 2019; 27, 3646-56. e5.
[69] Jang M, Hara S, Kim GH, et al. Dutomycin induces autophagy and apoptosis by targeting the serine protease inhibitor SERPINB6. ACS Chem Biol, 2021; 16, 360−70. doi:  10.1021/acschembio.0c00889
[70] Deming Y, Dumitrescu L, Barnes LL, et al. Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol, 2018; 136, 857−72. doi:  10.1007/s00401-018-1881-4
[71] Ren L, Zhang QG, Zhou J, et al. Leveraging diverse regulated cell death patterns to identify diagnosis biomarkers for Alzheimer's disease. J Prev Alzheimers Dis, 2024; 11, 1775−88. doi:  10.14283/jpad.2024.119
[72] Oh Y, Kim S, Kim Y, et al. Genome-wide CRISPR screening identifies tyrosylprotein sulfotransferase-2 as a target for augmenting anti-PD1 efficacy. Mol Cancer, 2024; 23, 155. doi:  10.1186/s12943-024-02068-x
[73] Bai LL, Zhang LQ, Ma J, et al. DIP2A is involved in SOD-mediated antioxidative reactions in murine brain. Free Radic Biol Med, 2021; 168, 6−15. doi:  10.1016/j.freeradbiomed.2021.03.027
[74] Ouchi N, Asaumi Y, Ohashi K, et al. DIP2A functions as a FSTL1 receptor. J Biol Chem, 2010; 285, 7127−34. doi:  10.1074/jbc.M109.069468
[75] Ma J, Li K, Sun X, et al. Dysregulation of AMPK-mTOR signaling leads to comorbid anxiety in Dip2a KO mice. Cereb Cortex, 2023; 33, 4977−89. doi:  10.1093/cercor/bhac393
[76] Liang XP, Hu Q, Li B, et al. Follistatin-like 1 attenuates apoptosis via disco-interacting protein 2 homolog A/Akt pathway after middle cerebral artery occlusion in rats. Stroke, 2014; 45, 3048−54. doi:  10.1161/STROKEAHA.114.006092
[77] Zhang BY, Zhang XS, Omorou M, et al. Disco interacting protein 2 homolog A (DIP2A): a key component in the regulation of brain disorders. Biomed Pharmacother, 2023; 168, 115771. doi:  10.1016/j.biopha.2023.115771