[1] Galea E, Launay N, Portero-Otin M, et al. Oxidative stress underlying axonal degeneration in adrenoleukodystrophy: A paradigm for multifactorial neurodegenerative diseases? Biochimica et Biophysica Acta (BBA)- Molecular Basis of Disease, 2012; 1822, 1475-8. doi:  10.1016/j.bbadis.2012.02.005
[2] Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev, 2012; 428010. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3362933
[3] Chiaravalloti D, DeLuca J. Cognitive impairment in multiple sclerosis. Lancet Neurol, 2008; 7, 1139-51. doi:  10.1016/S1474-4422(08)70259-X
[4] Ebers GC. Environmental factors and multiple sclerosis. Lancet Neural, 2008; 7, 268-77. doi:  10.1016/S1474-4422(08)70042-5
[5] Ljubisavljevic S. Oxidative Stress and Neurobiology of Demyelination. Mol Neurobiol, 2016; 53, 744-58. doi:  10.1007/s12035-014-9041-x
[6] Dietschy JM, Turley SD. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res, 2004; 45, 1375-97. doi:  10.1194/jlr.R400004-JLR200
[7] Schroepfer GJ. Oxysterols: Modulators of cholesterol metabolism and other process. physiol. Rev, 2000; 80, 361-563. http://d.old.wanfangdata.com.cn/Periodical/slkxjz200603020
[8] Leoni V, Lütjohann D, Masterman T. Levels of 7-oxocholesterol in cerebrospinal fluid are more than one thousand times lower than reported in multiple sclerosis. J Lipid Res, 2005; 46, 191-5. doi:  10.1194/jlr.C400005-JLR200
[9] Lemaire-Ewing S, Prunet C, Montange T, et al. Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols. Cell Biol Toxicol, 2005; 21, 97-114. doi:  10.1007/s10565-005-0141-2
[10] Zarrouk A, Vejux A, Mackrill J, et al. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev, 2014; 18, 148-62. doi:  10.1016/j.arr.2014.09.006
[11] Nury T, Zarrouk A, Vejux A, et al. Induction of oxiapoptophagy, a mixed mode of cell death associated with oxidative stress, apoptosis and autophagy, on 7-ketocholesterol-treated 158 N murine oligodendrocytes: impairment by a-tocopherol. Biochem. Biophys. Res. Commun, 2014; 446, 714-9. doi:  10.1016/j.bbrc.2013.11.081
[12] Nury T, Zarrouk A, Mackrill JJ, et al. Induction of oxiapoptophagy on 158 N murine oligodendrocytes treated by 7-ketocholesterol-, 7b-hydroxycholesterol-, or 24(S)-hydroxycholesterol: Protective effects of a-tocopherol and docosahexaenoic acid (DHA; C22:6 n-3). Steroids, 2015; 99, 194-203. doi:  10.1016/j.steroids.2015.02.003
[13] Zarrouk A, Nury T, Karym EM, et al. Attenuation of 7-ketocholesterol-induced overproduction of reactive oxygen species, apoptosis, and autophagy by dimethyl fumarate on 158N murine oligodendrocytes. J Steroid Biochem Mol Biol, 201; 7169, 29-38. http://www.sciencedirect.com/science/article/pii/S0960076016300383
[14] Carlson NG, Rose JW. Antioxidants in multiple sclerosis: do they have a role in therapy? CNS Drugs, 2006; 20, 433-41. doi:  10.2165/00023210-200620060-00001
[15] Arts IC, Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr, 2005; 81, 317S-25S. doi:  10.1093/ajcn/81.1.317S
[16] Graf BA, Milbury PE, Blumberg JB. Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food, 2005; 8, 281-90. doi:  10.1089/jmf.2005.8.281
[17] Hendriks JJA, De Vries HE, Van Der Pol SMA, et al. Flavonoids inhibit myelin phagocytosis by macrophages; a structure activity relationship study. Biochem Pharmacol, 2003; 65, 877-85. doi:  10.1016/S0006-2952(02)01609-X
[18] Smith-Palmer A, Stewart J, Fyfe L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol, 1998; 26, 118-22. doi:  10.1046/j.1472-765X.1998.00303.x
[19] Hafsa J, Mkadmini Hammib K, Ben Khedher MR, et al. Inhibition of protein glycation, antioxidant and antiproliferative activities of Carpobrotus edulis extracts. Biomed Pharmacother, 2016; 84, 1496-503. doi:  10.1016/j.biopha.2016.11.046
[20] Youdim KA, Joseph JA. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic Biol Med, 2001; 30, 583-94. doi:  10.1016/S0891-5849(00)00510-4
[21] Youdim KA, Dobbie MS, Kuhnle G, et al. Interaction between flavonoids and the blood-brain barrier: in vitro studies. J Neurochem, 2003; 85, 180-92. doi:  10.1046/j.1471-4159.2003.01652.x
[22] Youdim KA, Qaiser MZ, Begley DJ, et al. Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol Med, 2004; 36, 592-604. doi:  10.1016/j.freeradbiomed.2003.11.023
[23] Baarine M, Ragot K, Genin EC, et al. Peroxisomal and mitochondrial status of two murine oligodendrocytic cell lines (158N, 158JP): potential models for the study of peroxisomal disorders associated with dysmyelination processes. J Neurochem, 2009; 111, 119-31. doi:  10.1111/jnc.2009.111.issue-1
[24] Yoshioka T, Kawada K, Shimada T, et al. Lipid peroxidation in maternal and cord blood and protective mechanisms against activated oxygen toxicity in the blood. Am J Obster Gynecol, 1979; 135, 372-6. doi:  10.1016/0002-9378(79)90708-7
[25] Esterbauer H, Striegl G, Puhl H, et al. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun, 1989; 6, 67-75. doi:  10.3109/10715768909073429
[26] Levine RL. Carbonyl modified proteins in cellular regulation aging, and disease. Free Radic Biol Med, 2002; 32, 790-6. doi:  10.1016/S0891-5849(02)00765-7
[27] Awasthi YC, Sharma R, Cheng JZ, et al. Role of 4-hydroxynonenal in stress-mediated apoptosis signaling. Mol Aspects Med, 2003; 24, 219-30. doi:  10.1016/S0098-2997(03)00017-7
[28] Flohe L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol, 1984; 105, 114-21. doi:  10.1016/S0076-6879(84)05015-1
[29] Testa G, Staurenghi E, Zerbinati C, et al. Changes in brain oxysterols at different stages of Alzheimer's disease: Their involvement in neuroinflammation. Redox Biol, 2016; 10, 24-33. doi:  10.1016/j.redox.2016.09.001
[30] Zhornitsky S, McKay KA, Metz LM, et al. Cholesterol and markers of cholesterol turnover in multiple sclerosis: relationship with disease outcomes. Mult Scler Relat Disord, 2016; 5, 53-65. doi:  10.1016/j.msard.2015.10.005
[31] Yuan XM, Li W, Brunk UT, et al. Lysosomal destabilization during macrophage damage induced by cholesterol oxidation products. Free Radic Biol Med, 2000; 28, 208-18. doi:  10.1016/S0891-5849(99)00220-8
[32] Pedruzzi E, Guichard C, Ollivier V, D et al. NAD(P)H oxidase Nox-4 mediates 7-ketocholesterolinduced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol, 2004; 24, 10703-17. doi:  10.1128/MCB.24.24.10703-10717.2004
[33] Debbabi M, Nury T, Zarrouk A, et al. Protective Effects of α-Tocopherol, γ-Tocopherol and Oleic Acid, Three Compounds of Olive Oils, and No Effect of Trolox, on 7-Ketocholesterol-Induced Mitochondrial and Peroxisomal Dysfunction in Microglial BV-2 Cells. Int J Mol Sci, 2016; 17, e1973. doi:  10.3390/ijms17121973
[34] Zarrouk A, Ben Salem Y, Hafsa J, et al. 7β-hydroxycholesterol- induced cell death, oxidative stress, and fatty acid metabolism dysfunctions attenuated with sea urchin egg oil. Biochimie, 2018; 153, 210-9. doi:  10.1016/j.biochi.2018.06.027
[35] Badreddine A, Zarrouk A, Karym EM, et al. Argan Oil-Mediated Attenuation of Organelle Dysfunction, Oxidative Stress and Cell Death Induced by 7-Ketocholesterol in Murine Oligodendrocytes 158N. Int J Mol Sci, 2017; 18, e2220. doi:  10.3390/ijms18102220
[36] Nury T, Sghaier R, Zarrouk A, et al. Induction of peroxisomal changes in oligodendrocytes treated with 7-ketocholesterol: Attenuation by α-tocopherol. Biochimie, 2018; 153, 181-202. doi:  10.1016/j.biochi.2018.07.009
[37] Tesoriere L, Attanzio A, Allegra M, et al. Phytochemical indicaxanthin suppresses 7-ketocholesterol-induced THP-1 cell apoptosis by preventing cytosolic Ca(2+) increase and oxidative stress. Br J Nutr, 2013; 110, 230-40. doi:  10.1017/S000711451200493X
[38] Guina T, Deiana M, Calfapietra S, et al. The role of p38 MAPK in the induction of intestinal inflammation by dietary oxysterols: modulation by wine phenolics. Food Funct, 2015; 6, 1218-28. doi:  10.1039/C4FO01116C
[39] Zarrouk A, Nury T, El-Mostafa K, et al. Attenuation of 7-ketocholesterol-induced overproduction of reactive oxygen species, apoptosis, and autophagy by dimethyl fumarate on 158N murine oligodendrocytes. J Steroid Biochem Mol Biol, 2017; 169, 29-38. doi:  10.1016/j.jsbmb.2016.02.024
[40] Debbabi M, Zarrouk A, Bezine M, et al. Comparison of the effects of major fatty acids present in the Mediterranean diet (oleic acid, docosahexaenoic acid) and in hydrogenated oils (elaidic acid) on 7-ketocholesterol-induced oxiapoptophagy in microglial BV-2 cells. Chem Phys Lipids, 2017; 207, 151-70. doi:  10.1016/j.chemphyslip.2017.04.002
[41] Kann O, Hoffmann A, Schumann RR, et al. The tyrosine kinase inhibitor AG126 restores receptor signaling and blocks release functions in activated microglia (brain macrophages) by preventing a chronic rise in the intracellular calcium level. J Neurochem, 2004; 90, 513-25. doi:  10.1111/j.1471-4159.2004.02534.x
[42] Lee CS, Park WJ, Han ES, et al. Differential modulation of 7-ketocholesterol toxicity against PC12 cells by calmodulin antagonists and Ca2+ channel blockers. Neurochem Res, 2007; 32, 87-98. http://europepmc.org/abstract/med/17151911
[43] Sarkaki A, Farbood Y, Dolatshahi M, et al. neuroprotective effects of ellagic acid in a rat model of parkinson's disease. Acta Med Iran, 2016; 54, 494-502. http://www.ncbi.nlm.nih.gov/pubmed/27701719
[44] Chen HQ, Jin ZY, Wang XJ, et al. Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation. Neurosci Lett, 2008; 448, 175-9. doi:  10.1016/j.neulet.2008.10.046
[45] Cheng HY, Hsieh MT, Tsai FS, et al. Neuroprotective effect of luteolin on amyloid protein (25-35)-induced toxicity in cultured rat cortical neurons. Phytother Res, 2010; 24, S102-8. http://europepmc.org/abstract/med/19610032
[46] Dirscherl K, Karlstetter M, Ebert S, et al. Luteolin triggers global changes in themicroglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J Neuroinflammation, 2010; 7, 2093-4. doi:  10.1186/1742-2094-7-3
[47] Sternberg Z, Chadha K, Lieberman A, et al. Immunomodulatory responses of peripheral blood mononuclear cells from multiple sclerosis patients uponin vitro incubation with the flavonoid luteolin: additive effects of IFN-beta. J Neuroinflammation, 2009; 6, 28. doi:  10.1186/1742-2094-6-28
[48] Theoharides TC. Luteolin as a therapeutic option for multiple sclerosis. J Neuroinflammation, 2009; 6, 29. doi:  10.1186/1742-2094-6-29
[49] Kempuraj D, Tagen M, Iliopoulou BP, et al. Luteolin inhibits myelin basic protein-induced human mast cell activation and mast cell-dependent stimulation of Jurkat T cells. Br J Pharmacol, 2008; 155, 1076-84. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2597265
[50] Zhu X, Li K, Guo X, et al. Schwann cell proliferation and differentiation that is induced by ferulic acid through MEK1/ERK1/2 signalling promotes peripheral nerve remyelination following crush injury in rats. Exp Ther Med, 2016; 12, 1915-21. doi:  10.3892/etm.2016.3525
[51] Rattanajarasroj S, Unchern S. Comparable attenuation of Abeta(25-35)-induced neurotoxicity by quercitrin and 17beta-estradiol in cultured rat hippocampal neurons. Neurochem Res, 2010; 35, 1196-205. doi:  10.1007/s11064-010-0175-6
[52] Rees A, Dodd GF, Spencer JPE. The Effects of Flavonoids on Cardiovascular Health: A Review of Human Intervention Trials and Implications for Cerebrovascular Function. Nutrients, 2018; 10, e1852. doi:  10.3390/nu10121852
[53] Lecour S, Lamont KT. Natural polyphenols and cardioprotection. Mini Rev Med Chem, 2011; 11, 1191-9. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228891862/
[54] Qu Y, Tang J, Liu L, et al. α-Tocopherol liposome loaded chitosan hydrogel to suppress oxidative stress injury in cardiomyocytes. Int J Biol Macromol, 2018; pii: S0141-8130, 32715-6. http://www.onacademic.com/detail/journal_1000040847385510_fcd3.html
[55] Brahmi F, Vejux A, Sghaier R, et al. Prevention of 7-ketocholesterol-induced side effects by natural compounds. Crit Rev Food Sci Nutr, 2018; 16, 1-20. http://www.ncbi.nlm.nih.gov/pubmed/29993272