[1] Ostrom QT, Cioffi G, Waite K, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018. Neuro Oncol, 2021; 23, iii1−105. doi:  10.1093/neuonc/noab200
[2] Mitrofan LM, Krukas-Hampel MR, Mendoza LA. Clinical characteristics of glioblastoma multiforme (GBM) patients who reached 400 days post diagnostic from a retrospective real-world data. Ann Oncol, 2018; 29, viii126.
[3] Cohen MH, Shen YL, Keegan P, et al. FDA drug approval summary: bevacizumab (Avastin®) as treatment of recurrent glioblastoma multiforme. Oncologist, 2009; 14, 1131−8. doi:  10.1634/theoncologist.2009-0121
[4] Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med, 2014; 370, 709−22. doi:  10.1056/NEJMoa1308345
[5] Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol, 1999; 155, 739−52. doi:  10.1016/S0002-9440(10)65173-5
[6] Cai H, Liu WJ, Liu XB, et al. Advances and prospects of vasculogenic mimicry in glioma: a potential new therapeutic target? Onco Targets Ther, 2020; 13, 4473-83.
[7] Cavaco A, Rezaei M, Niland S, et al. Collateral damage intended-cancer-associated fibroblasts and vasculature are potential targets in cancer therapy. Int J Mol Sci, 2017; 18, 2355. doi:  10.3390/ijms18112355
[8] Yue WY, Chen ZP. Does vasculogenic mimicry exist in astrocytoma? J Histochem Cytochem, 2005; 53, 997-1002.
[9] Li C, Chen YS, Zhang QP, et al. Vasculogenic mimicry persists during glioblastoma xenograft growth. Glioma, 2018; 1, 16−21. doi:  10.4103/glioma.glioma_4_17
[10] El Hallani S, Boisselier B, Peglion F, et al. A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain, 2010; 133, 973−82. doi:  10.1093/brain/awq044
[11] Baisiwala S, Auffinger B, Caragher SP, et al. Chemotherapeutic stress induces transdifferentiation of glioblastoma cells to endothelial cells and promotes vascular mimicry. Stem Cells Int, 2019; 2019, 6107456.
[12] Angara K, Borin TF, Arbab AS. Vascular mimicry: a novel neovascularization mechanism driving anti-angiogenic therapy (AAT) resistance in glioblastoma. Transl Oncol, 2017; 10, 650−60. doi:  10.1016/j.tranon.2017.04.007
[13] Chen YS, Chen ZP. Vasculogenic mimicry: a novel target for glioma therapy. Chin J Cancer, 2014; 33, 74−9. doi:  10.5732/cjc.012.10292
[14] Chen YS, Jing ZT, Luo C, et al. Vasculogenic mimicry-potential target for glioblastoma therapy: an in vitro and in vivo study. Med Oncol, 2012; 29, 324−31. doi:  10.1007/s12032-010-9765-z
[15] Chiao MT, Yang YC, Cheng WY, et al. CD133+ glioblastoma stem-like cells induce vascular mimicry in vivo. Curr Neurovasc Res, 2011; 8, 210−9. doi:  10.2174/156720211796558023
[16] Wu HB, Yang S, Weng HY, et al. Autophagy-induced KDR/VEGFR-2 activation promotes the formation of vasculogenic mimicry by glioma stem cells. Autophagy, 2017; 13, 1528−42. doi:  10.1080/15548627.2017.1336277
[17] Delgado-Bellido D, Serrano-Saenz S, Fernández-Cortés M, et al. Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Mol Cancer, 2017; 16, 65. doi:  10.1186/s12943-017-0631-x
[18] Mei X, Chen YS, Chen FR, et al. Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging. Neuro Oncol, 2017; 19, 1109−18. doi:  10.1093/neuonc/nox016
[19] Jin MH, Oh DY. ATM in DNA repair in cancer. Pharmacol Ther, 2019; 203, 107391. doi:  10.1016/j.pharmthera.2019.07.002
[20] Okuno Y, Nakamura-Ishizu A, Otsu K, et al. Pathological neoangiogenesis depends on oxidative stress regulation by ATM. Nat Med, 2012; 18, 1208−16. doi:  10.1038/nm.2846
[21] Shi Y, Liu Z, Zhang Q, et al. Phosphorylation of seryl-tRNA synthetase by ATM/ATR is essential for hypoxia-induced angiogenesis. PLoS Biol, 2020; 18, e3000991. doi:  10.1371/journal.pbio.3000991
[22] Eich M, Roos WP, Nikolova T, et al. Contribution of ATM and ATR to the resistance of glioblastoma and malignant melanoma cells to the methylating anticancer drug temozolomide. Mol Cancer Ther, 2013; 12, 2529−40. doi:  10.1158/1535-7163.MCT-13-0136
[23] Squatrito M, Brennan CW, Helmy K, et al. Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell, 2010; 18, 619−29. doi:  10.1016/j.ccr.2010.10.034
[24] Liu EK, Sulman EP, Wen PY, et al. Novel therapies for glioblastoma. Curr Neurol Neurosci Rep, 2020; 20, 19. doi:  10.1007/s11910-020-01042-6
[25] Xie J, Kong X, Wang W, et al. Vasculogenic mimicry formation predicts tumor progression in oligodendroglioma. Pathol Oncol Res, 2021; 27, 1609844. doi:  10.3389/pore.2021.1609844
[26] Carruthers R, Ahmed SU, Strathdee K, et al. Abrogation of radioresistance in glioblastoma stem-like cells by inhibition of ATM kinase. Mol Oncol, 2015; 9, 192−203. doi:  10.1016/j.molonc.2014.08.003
[27] WHO Classification of Tumours Editorial Board. World Health Organization classification of tumours of the central nervous system. 5th ed. International Agency for Research on Cancer. 2021.
[28] Xiang T, Lin YX, Ma WL, et al. Vasculogenic mimicry formation in EBV-associated epithelial malignancies. Nat Commun, 2018; 9, 5009. doi:  10.1038/s41467-018-07308-5
[29] Williamson SC, Metcalf RL, Trapani F, et al. Vasculogenic mimicry in small cell lung cancer. Nat Commun, 2016; 7, 13322. doi:  10.1038/ncomms13322
[30] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ddCT method. Methods, 2001; 25, 402−8. doi:  10.1006/meth.2001.1262
[31] Rosińska S, Gavard J. Tumor vessels fuel the fire in glioblastoma. Int J Mol Sci, 2021; 22, 6514. doi:  10.3390/ijms22126514
[32] Hendrix MJC, Seftor EA, Seftor REB, et al. Tumor cell vascular mimicry: novel targeting opportunity in melanoma. Pharmacol Ther, 2016; 159, 83−92. doi:  10.1016/j.pharmthera.2016.01.006
[33] Wechman SL, Emdad L, Sarkar D, et al. Vascular mimicry: triggers, molecular interactions and in vivo models. Adv Cancer Res, 2020; 148, 27−67.
[34] Agnihotri S, Burrell K, Buczkowicz P, et al. ATM regulates 3-methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents. Cancer Discov, 2014; 4, 1198−213. doi:  10.1158/2159-8290.CD-14-0157
[35] Nadkarni A, Shrivastav M, Mladek AC, et al. ATM inhibitor KU-55933 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells. J Neurooncol, 2012; 110, 349−57. doi:  10.1007/s11060-012-0979-0
[36] Lim YC, Quek H, Offenhäuser C, et al. ATM inhibition prevents interleukin-6 from contributing to the proliferation of glioblastoma cells after ionizing radiation. J Neurooncol, 2018; 138, 509−18. doi:  10.1007/s11060-018-2838-0
[37] Blake SM, Stricker SH, Halavach H, et al. Inactivation of the ATMIN/ATM pathway protects against glioblastoma formation. eLife, 2016; 5, e08711. doi:  10.7554/eLife.08711
[38] Kinoshita T, Nagamatsu G, Kosaka T, et al. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells. Biochem Biophys Res Commun, 2011; 407, 321−6. doi:  10.1016/j.bbrc.2011.03.013
[39] Kim J, Wong PKY. Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling. Stem Cells, 2009; 27, 1987−98. doi:  10.1002/stem.125
[40] Mao YL, Zhu LQ, Huang ZJ, et al. Stem-like tumor cells involved in heterogeneous vasculogenesis in breast cancer. Endocr Relat Cancer, 2020; 27, 23−39. doi:  10.1530/ERC-19-0054
[41] Zheng N, Zhang SQ, Wu WD, et al. Regulatory mechanisms and therapeutic targeting of vasculogenic mimicry in hepatocellular carcinoma. Pharmacol Res, 2021; 166, 105507. doi:  10.1016/j.phrs.2021.105507
[42] Annovazzi L, Caldera V, Mellai M, et al. The DNA damage/repair cascade in glioblastoma cell lines after chemotherapeutic agent treatment. Int J Oncol, 2015; 46, 2299−308. doi:  10.3892/ijo.2015.2963
[43] Ping YF, Bian XW. Cancer stem cells switch on tumor neovascularization. Curr Mol Med, 2011; 11, 69−75. doi:  10.2174/156652411794474383
[44] Sun BC, Zhang DF, Zhao N, et al. Epithelial-to-endothelial transition and cancer stem cells: two cornerstones of vasculogenic mimicry in malignant tumors. Oncotarget, 2017; 8, 30502−10. doi:  10.18632/oncotarget.8461
[45] Yao XH, Ping YF, Bian XW. Contribution of cancer stem cells to tumor vasculogenic mimicry. Protein Cell, 2011; 2, 266−72. doi:  10.1007/s13238-011-1041-2
[46] Biondani G, Zeeberg K, Greco MR, et al. Extracellular matrix composition modulates PDAC parenchymal and stem cell plasticity and behavior through the secretome. FEBS J, 2018; 285, 2104−24. doi:  10.1111/febs.14471
[47] Wei XX, Chen YH, Jiang XJ, et al. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer, 2021; 20, 7. doi:  10.1186/s12943-020-01288-1
[48] Xie XC, Zhang Y, Wang Z, et al. ATM at the crossroads of reactive oxygen species and autophagy. Int J Biol Sci, 2021; 17, 3080−90. doi:  10.7150/ijbs.63963
[49] Shah AA, Kamal MA, Akhtar S. Tumor angiogenesis and VEGFR-2: mechanism, pathways and current biological therapeutic interventions. Curr Drug Metab, 2021; 22, 50−9.
[50] Yao XH, Ping YF, Liu Y, et al. Vascular endothelial growth factor receptor 2 (VEGFR-2) plays a key role in vasculogenic mimicry formation, neovascularization and tumor initiation by Glioma stem-like cells. PLoS One, 2013; 8, e57188. doi:  10.1371/journal.pone.0057188
[51] Delgado-Bellido D, Fernández-Cortés M, Rodríguez MI, et al. VE-cadherin promotes vasculogenic mimicry by modulating kaiso-dependent gene expression. Cell Death Differ, 2019; 26, 348−61. doi:  10.1038/s41418-018-0125-4
[52] Theocharis AD, Skandalis SS, Gialeli C, et al. Extracellular matrix structure. Adv Drug Deliv Rev, 2016; 97, 4−27. doi:  10.1016/j.addr.2015.11.001
[53] Larson AR, Lee CW, Lezcano C, et al. Melanoma spheroid formation involves laminin-associated vasculogenic mimicry. Am J Pathol, 2014; 184, 71−8. doi:  10.1016/j.ajpath.2013.09.020