[1] Chaudhry R, Ghosh A, Chandolia A. Pathogenesis of Mycoplasma pneumoniae: An update. Indian J Med Microbiol, 2016; 34, 7-16. doi:  10.4103/0255-0857.174112
[2] Esposito NPaS. Macrolide-resistant Mycoplasma pneumoniae; its role in respiratory infection. J Antimicrob Chemother, 2013; 68, 506-11. doi:  10.1093/jac/dks457
[3] Chalker V, Stocki T, Litt D, et al. Increased detection of Mycoplasma pneumoniae infection in children in England and Wales, October 2011 to January 2012. Euro Surveill, 2012; 17, 5-9. http://d.scholar.cnki.net/detail/SJPD0006_U/SJPD120727239361
[4] Dumke R, Jacobs E. Culture-independent multi-locus variable-n umber tandem-repeat analysis (MLVA) of Mycoplasma pneumoniae. J Microbiol Methods, 2011; 86, 393-6. doi:  10.1016/j.mimet.2011.06.008
[5] Pereyre S, Charron A, Hidalgo-Grass C, et al. The spread of Mycoplasma pneumoniae is polyclonal in both an endemic setting in France and in an epidemic setting in Israel. PLoS One, 2012; 7, e38585. doi:  10.1371/journal.pone.0038585
[6] You-Sook Youn KL. Mycoplasma pneumoniae pneumonia in children. Korean J Pediatr, 2012; 55, 42-7. doi:  10.3345/kjp.2012.55.2.42
[7] Liu Y, Ye XY, Zhang H, et al. Antimicrobial susceptibility of Mycoplasma pneumoniae isolates and molecular analysis of macrolide-resistant strains from Shanghai, China. Antimicrob Agents Chemother, 2009; 53, 2160-2. doi:  10.1128/AAC.01684-08
[8] Yamada M, Buller R, Bledsoe S, et al. Rising rates of macrolide-resistant Mycoplasma pneumoniae in the central United States. Pediatr Infect Dis J, 2012; 31, 409-10. doi:  10.1097/INF.0b013e318247f3e0
[9] Yasuhiro Kawai, Naoyuki Miyashita, Mika Kubo, et al. Nationwide surveillance of macrolide-resistant Mycoplasma pneumoniae infection in pediatric patients. Antimicrob Agents Chemother, 2013; 57, 4046-9. doi:  10.1128/AAC.00663-13
[10] Chironna M, Sallustio A, Esposito S, et al. Emergence of macrolide-resistant strains during an outbreak of Mycoplasma pneumoniae infections in children. J Antimicrob Chemother, 2011; 66, 734-7. doi:  10.1093/jac/dkr003
[11] Yan C, Sun H, Zhao H. Latest Surveillance Data on Mycoplasma pneumoniae Infections in Children Suggesting a New Epidemic Occurring in Beijing. J Clin Microbiol, 2016; 54, 1400-1. doi:  10.1128/JCM.00184-16
[12] Matsuoka M, Narita M, Okazaki N, et al. Characterization and molecular analysis of macrolide-resistant Mycoplasma pneumoniae clinical isolates obtained in Japan. Antimicrob Agents Chemother, 2004; 48, 4624-30. doi:  10.1128/AAC.48.12.4624-4630.2004
[13] Suzuki S, Yamazaki T, Narita M, et al. Clinical evaluation of macrolide-resistant Mycoplasma pneumoniae. Antimicrob Agents Chemother, 2006; 50, 709-12. doi:  10.1128/AAC.50.2.709-712.2006
[14] Be'be'ar CM, Pereyre S. Mechanisms of drug resistance in Mycoplasma pneumonae. Curr Drug Targets Infec Disord, 2005; 5, 263-71. doi:  10.2174/1568005054880109
[15] Li R, Li Y, Fang X, et al. SNP detection for massively parallel whole-genome resequencing. Genome Res, 2009; 19, 1124-32. doi:  10.1101/gr.088013.108
[16] Li R, Yu C, Li Y, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics (Oxford, England), 2009; 25, 1966-7. doi:  10.1093/bioinformatics/btp336
[17] Darling AE, Mau B, Perna NT. ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One, 2010; 5, e11147. doi:  10.1371/journal.pone.0011147
[18] Liu B, Pop M. ARDB--Antibiotic Resistance Genes Database. Nucleic Acids Res 37 (Database issue), 2009; 443-7. http://ardb.cbcb.umd.edu/tutorial.shtml
[19] Xue G, Cao L, Wang L, et al. Evaluation of P1 adhesin epitopes for the serodiagnosis of Mycoplasma pneumoniae infections. FEMS Microbiol Lett, 2013; 340, 86-92. doi:  10.1111/fml.2013.340.issue-2
[20] Sun H, Xue G, Yan C, et al. Multiple-locus variable-number tandem-repeat analysis of mycoplasma pneumoniae clinical specimens and proposal for amendment of MLVA nomenclature. PLoS One, 2013; 8, e64607. doi:  10.1371/journal.pone.0064607
[21] Shinabarger DL, Zurenko GE, Hesje CK, et al. Evaluation of the effect of bacterial efflux pumps on the antibacterial activity of the novel fluoroquinolone besifloxacin. J Chemother, 2011; 23, 80-6. doi:  10.1179/joc.2011.23.2.80
[22] Lenglet A, Herrador Z, Magiorakos AP, et al. Surveillance status and recent data for Mycoplasma pneumoniae infections in the European Union and European Economic Area, January 2012. Euro Surveill, 2012; 17, 2-7. https://www.researchgate.net/publication/221819728_Surveillance_status_and_recent_data_for_Mycoplasma_pneumoniae_infections_in_the_European_Union_and_European_Economic_Area_January_2012
[23] Consilvio NP, Rapino D, Scaparrotta A, et al. Mycoplasma pneumoniae infection with rhabdomyolysis in a child. Infez Med, 2014; 22, 48-50. http://paper.medlive.cn/literature/1103126
[24] Lucier TS, Heitzman K, Liu SK, et al. Transition mutations in the 23S rRNA of erythromycin-resistant isolates of Mycoplasma pneumoniae. Antimicrob Agents Chemother, 1995; 39, 2770-3. doi:  10.1128/AAC.39.12.2770
[25] Roberts MC. Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol Biotechnol, 2004; 28, 47-62. doi:  10.1385/MB:28:1
[26] Giedraitienė A, Vitkauskienė A, Naginienė R, et al. Antibiotic Resistance Mechanisms of Clinically Important Bacteria. Medicina (Kaunas), 2011; 47, 137-46. https://www.researchgate.net/publication/51552502_Antibiotic_Resistance_Mechanisms_of_Clinically_Important_Bacteria
[27] Raherison S, Gonalez P, Renaudin H, et al. Evidence of Active Efflux in Resistance to Ciprofloxacin and to Ethidium Bromide by Mycoplasma hominis. Antimicrob. Agents Chemother, 2002; 46, 672-9. doi:  10.1128/AAC.46.3.672-679.2002
[28] Pereyre S, Gonalez P, De Barbeyrac B, et al. Mutations in 23S rRNA Account for Intrinsic Resistance to Macrolides in Mycoplasma hominis and Mycoplasma fermentans and for Acquired Resistance to Macrolides in M. hominis. Antimicrob Agents Chemother, 2002; 46, 3142-50. doi:  10.1128/AAC.46.10.3142-3150.2002
[29] Lucier TS, Heitzman K, Liu SK, et al. Transition mutations in the 23S rRNA of erythromycin-resistant isolates of Mycoplasma pneumoniae. Antimicrob Agents Chemother, 1995; 39, 2770-3. doi:  10.1128/AAC.39.12.2770
[30] Waites KB, Balish MF, Atkinson TP. New insights into the pathogenesis and detection of Mycoplasma pneumoniae infections. Future Microbiol, 2008; 3, 635-48. doi:  10.2217/17460913.3.6.635
[31] Kobayashi N, Nishino K, Yamaguchi A. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol, 2001; 183, 5639-44. doi:  10.1128/JB.183.19.5639-5644.2001
[32] Kobayashi N, Nishino K, Hirata T, et al. Membrane topology of ABC-type macrolide antibiotic exporter macB in Escherichia coli. FEBS Lett, 2003; 546, 241-6. doi:  10.1016/S0014-5793(03)00579-9
[33] Yasufuku T, Shigemura K, Shirakawa T, et al. Correlation of Overexpression of Efflux Pump Genes with Antibiotic Resistance in Escherichia coli Strains Clinically Isolated from Urinary Tract Infection Patients. J Clin Microbiol, 2011; 49, 189-94. doi:  10.1128/JCM.00827-10
[34] Katsumi Shigemura, Kayo Osawa, Ayaka Kato, et al. Association of overexpression of efflux pump genes with antibiotic resistance in Pseudomonas aeruginosa strains clinically isolated from urinary tract infection patients. J Antibiot (Tokyo), 2015; 68, 568-72. doi:  10.1038/ja.2015.34
[35] LU Chun-Yu, Zhang Z. Effect of efflux system on multi-resistance of Acinetobacter baumannii. Beijing Medical Journal, 2007; 29, 356-60. (In Chinese)
[36] Zhang Z, Liu ZQ, Zheng PY, et al. Effects of efflux pump inhibitors on the multidrug resistance of Helicobacter pylori. World J Gastroenterol, 2010; 16, 1279-84. doi:  10.3748/wjg.v16.i10.1279
[37] Huang Tsi-Shu, Kunin Calvin M, Wang Hui-Min, et al. Inhibition of the Mycobacterium tuberculosis reserpine-sensitive efflux pump augments intracellular concentrations of ciprofloxacin and enhances susceptibility of some clinical isolates. J Formos Med Assoc, 2013; 112, 789-94. doi:  10.1016/j.jfma.2012.03.009
[38] Frempong-Manso E, Raygada JL, Demarco CE, et al. Inability of a reserpine-based screen to identify strains overexpressing efflux pump genes in clinical isolates of Staphylococcus aureus. Int J Antimicrob Agents, 2009; 33, 360-3. doi:  10.1016/j.ijantimicag.2008.10.016
[39] Raherison S, Gonzalez P, Renaudin H, et al. Evidence of Active Efflux in Resistance to Ciprofloxacin and to Ethidium Bromide by Mycoplasma hominis. Antimicrob Agents Chemother, 2002; 46, 672-9. doi:  10.1128/AAC.46.3.672-679.2002