[1] Chernyshev VV, Zakharenko AM, Ugay SM, et al. Morphologic and chemical composition of particulate matter in motorcycle engine exhaust. Toxicol Rep, 2018; 5, 224−30. doi:  10.1016/j.toxrep.2018.01.003
[2] Costagliola MA, Murena F, Prati MV. Exhaust emissions of volatile organic compounds of powered two-wheelers: effect of cold start and vehicle speed. Contribution to greenhouse effect and tropospheric ozone formation. Sci Total Environ, 2014; 468-9, 1043−9.
[3] Canagaratna MR, Onasch TB, Wood EC, et al. Evolution of vehicle exhaust particles in the atmosphere. J Air Waste Manag Assoc, 2010; 60, 1192−203. doi:  10.3155/1047-3289.60.10.1192
[4] Chang CT, Chen BY. Toxicity assessment of volatile organic compounds and polycyclic aromatic hydrocarbons in motorcycle exhaust. J Hazard Mater, 2008; 153, 1262−9. doi:  10.1016/j.jhazmat.2007.09.091
[5] Yang HH, Lee SA, Hsieh DP, et al. PM2.5 and associated polycyclic aromatic hydrocarbon and mutagenicity emissions from motorcycles. Bull Environ Contam Toxicol, 2008; 81, 412−5. doi:  10.1007/s00128-008-9478-6
[6] Kheirbek I, Haney J, Douglas S, et al. The contribution of motor vehicle emissions to ambient fine particulate matter public health impacts in New York City: a health burden assessment. Environ Health, 2016; 15, 89. doi:  10.1186/s12940-016-0172-6
[7] Lighty JS, Veranth JM, Sarofim AF. Combustion aerosols: factors governing their size and composition and implications to human health. J Air Waste Manag Assoc, 2000; 50, 1565−618, discussion 1619-22. doi:  10.1080/10473289.2000.10464197
[8] Pham CT, Kameda T, Toriba A, et al. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in particulates emitted by motorcycles. Environ Pollut, 2013; 183, 175−83. doi:  10.1016/j.envpol.2013.01.003
[9] Lin CW, Lu SJ. Lin KS. Test emission characteristics of motorcycles in Central Taiwan. Sci Total Environ, 2006; 368, 435−43. doi:  10.1016/j.scitotenv.2006.03.032
[10] Kuo ML, Jee SH, Chou MH, et al. Involvement of oxidative stress in motorcycle exhaust particle-induced DNA damage and inhibition of intercellular communication. Mutat Res, 1998; 413, 143−50. doi:  10.1016/S1383-5718(98)00020-5
[11] Lee CC, Cheng YW, Kang JJ. Motorcycle exhaust particles induce IL-8 production through NF-kappaB activation in human airway epithelial cells. J Toxicol Environ Health A, 2005; 68, 1537−55. doi:  10.1080/15287390590967496
[12] Ueng TH, Hwang WP, Chen RM, et al. Effects of motorcycle exhaust on cytochrome P-450-dependent monooxygenases and glutathione S-transferase in rat tissues. J Toxicol Environ Health A, 1998; 54, 509−27. doi:  10.1080/009841098158674
[13] Ueng TH, Wang HW, Hung CC, et al. Effects of motorcycle exhaust inhalation exposure on cytochrome P-450 2B1, antioxidant enzymes, and lipid peroxidation in rat liver and lung. J Toxicol Environ Health A, 2004; 67, 875−88. doi:  10.1080/15287390490441283
[14] Ueng TH, Hung CC, Kuo ML, et al. Induction of fibroblast growth factor-9 and interleukin-1alpha gene expression by motorcycle exhaust particulate extracts and benzo(a)pyrene in human lung adenocarcinoma cells. Toxicol Sci, 2005; 87, 483−96.
[15] Shao B, Jin TY, Wu XW, et al. Application of benchmark dose (BMD) in estimating biological exposure limit (BEL) to cadmium. Biomed Environ Sci, 2007; 20, 460−4.
[16] Chen X, Wang Z, Zhu G, et al. Benchmark dose estimation of cadmium reference level for hypertension in a Chinese population. Environ Toxicol Pharmacol, 2015; 39, 208−12. doi:  10.1016/j.etap.2014.11.026
[17] Yu T, Zhang X, Zhong L, et al. The use of a 0.20 μm particulate matter filter decreases cytotoxicity in lung epithelial cells following air-liquid interface exposure to motorcycle exhaust. Environ Pollut, 2017; 227, 287−95. doi:  10.1016/j.envpol.2017.04.080
[18] Kasumba J, Hopke PK, Chalupa DC, et al. Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY. Sci Total Environ, 2009; 407, 5071−84. doi:  10.1016/j.scitotenv.2009.05.040
[19] Järvelä M, Huvinen M, Viitanen AK, et al. Characterization of particle exposure in ferrochromium and stainless steel production. J Occup Environ Hyg, 2016; 13, 558−68. doi:  10.1080/15459624.2016.1159687
[20] Yu T, Zhang XY, Wang ZX, et al. Evaluation of the viability of BEAS-2B cells exposed to gasoline engine exhaust with different particle sizes by air-liquid interface. Chin J Ind Hyg Occup Dis, 2017; 35, 414−21. (In Chinese
[21] Upadhyay S, Palmberg L. Air-liquid interface: relevant in vitro models for investigating air pollutant-induced pulmonary toxicity. Toxicol Sci, 2018; 164, 21−30.
[22] Ritter D, Knebel J, Niehof M, et al. In vitro inhalation cytotoxicity testing of therapeutic nanosystems for pulmonary infection. Toxicol In Vitro, 2020; 63, 104714. doi:  10.1016/j.tiv.2019.104714
[23] Tatsuta M, Kan OK, Ishii Y, et al. Effects of cigarette smoke on barrier function and tight junction proteins in the bronchial epithelium: protective role of cathelicidin LL-37. Respir Res, 2019; 20, 251. doi:  10.1186/s12931-019-1226-4
[24] Han Z, Zhu Y, Cui Z, et al. MicroRNA Let-7f-1-3p attenuates smoke-induced apoptosis in bronchial and alveolar epithelial cells in vitro by targeting FOXO1. Eur J Pharmacol, 2019; 862, 172531. doi:  10.1016/j.ejphar.2019.172531
[25] Hiemstra PS, Grootaers G, van der Does AM, et al. Human lung epithelial cell cultures for analysis of inhaled toxicants: Lessons learned and future directions. Toxicol In Vitro, 2018; 47, 137−46. doi:  10.1016/j.tiv.2017.11.005
[26] Toor A, Culibrk L, Singhera GK, et al. Transcriptomic and proteomic host response to Aspergillus fumigatus conidia in an air-liquid interface model of human bronchial epithelium. PLoS One, 2018; 13, e0209652. doi:  10.1371/journal.pone.0209652
[27] Thorne D, Larard S, Baxter A, et al. The comparative in vitro assessment of e-cigarette and cigarette smoke aerosols using the γH2AX assay and applied dose measurements. Toxicol Lett, 2017; 265, 170−8. doi:  10.1016/j.toxlet.2016.12.006
[28] Al Zallouha M, Landkocz Y, Brunet J, et al. Usefulness of toxicological validation of VOCs catalytic degradation by air-liquid interface exposure system. Environ Res, 2017; 152, 328−35. doi:  10.1016/j.envres.2016.10.027
[29] Stoddart MJ. Cell viability assays: introduction. Methods Mol Biol, 2011; 740, 1−6.
[30] Kašuba V, Milić M, Rozgaj R, et al. Effects of low doses of glyphosate on DNA damage, cell proliferation and oxidative stress in the HepG2 cell line. Environ Sci Pollut Res Int, 2017; 24, 19267−81. doi:  10.1007/s11356-017-9438-y
[31] Li K, Wang Y, Zhang A, et al. miR-379 inhibits cell proliferation, invasion, and migration of vascular smooth muscle cells by targeting insulin-like factor-1. Yonsei Med J, 2017; 58, 234−40. doi:  10.3349/ymj.2017.58.1.234
[32] Xiao H, Wang J, Yan W, et al. GLUT1 regulates cell glycolysis and proliferation in prostate cancer. Prostate, 2018; 78, 86−94. doi:  10.1002/pros.23448
[33] Ke S, Cheng XY, Zhang JY, et al. Estimation of the benchmark dose of urinary cadmium as the reference level for renal dysfunction: a large sample study in five cadmium polluted areas in China. BMC Public Health, 2015; 15, 656. doi:  10.1186/s12889-015-2021-x
[34] Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ Int, 2015; 74, 136−43. doi:  10.1016/j.envint.2014.10.005
[35] Bai N, Khazaei M, van Eeden SF, et al. The pharmacology of particulate matter air pollution-induced cardiovascular dysfunction. Pharmacol Ther, 2007; 113, 16−29.
[36] Kirrane EF, Luben TJ, Benson A, et al. A systematic review of cardiovascular responses associated with ambient black carbon and fine particulate matter. Environ Int, 2019; 127, 305−16. doi:  10.1016/j.envint.2019.02.027
[37] Clarke AG, Robertson LA, Hamilton RS, et al. A Lagrangian model of the evolution of the particulate size distribution of vehicular emissions. Sci Total Environ, 2004; 334-335, 197−206. doi:  10.1016/j.scitotenv.2004.04.038
[38] Niu J, Rasmussen PE, Magee R, et al. Spatial and temporal variability of incidental nanoparticles in indoor workplaces: impact on the characterization of point source exposures. Environ Sci Process Impacts, 2015; 17, 98−109. doi:  10.1039/C4EM00478G
[39] Shen F, Zheng Y, Niu M, et al. Characteristics of biological particulate matters at urban and rural sites in the North China Plain. Environ Pollut, 2019; 253, 569−77. doi:  10.1016/j.envpol.2019.07.033
[40] Buha A, Antonijević B, Milovanović V, et al. Polychlorinated biphenyls as oxidative stress inducers in liver of subacutely exposed rats: implication for dose-dependence toxicity and benchmark dose concept. Environ Res, 2015; 136, 309−17. doi:  10.1016/j.envres.2014.11.005
[41] Chen S, Li D, Zhang H, et al. The development of a cell-based model for the assessment of carcinogenic potential upon long-term PM2.5 exposure. Environ Int, 2019; 131, 104943. doi:  10.1016/j.envint.2019.104943
[42] Chepelev NL, Meek ME, Yauk CL. Application of benchmark dose modeling to protein expression data in the development and analysis of mode of action/adverse outcome pathways for testicular toxicity. J Appl Toxicol, 2014; 34, 1115−21.
[43] Fournier K, Baumont E, Glorennec P, et al. Relative toxicity for indoor semi volatile organic compounds based on neuronal death. Toxicol Lett, 2017; 279, 33−42. doi:  10.1016/j.toxlet.2017.07.875
[44] Kirman CR, Gargas ML, Collins JJ, et al. Screening-level risk assessment for styrene-acrylonitrile (SAN) trimer detected in soil and groundwater. J Toxicol Environ Health A, 2012; 75, 1280−97. doi:  10.1080/15287394.2012.709441
[45] Liu C, Li Y, Zhu C, et al. Benchmark dose for cadmium exposure and elevated N-acetyl-β-D-glucosaminidase: a meta-analysis. Environ Sci Pollut Res Int, 2016; 23, 20528−38. doi:  10.1007/s11356-016-7214-z
[46] Wang Q, Hu J, Han TX, et al. Application of BMD approach to identify thresholds of cadmium-induced renal effect among 35 to 55 year-old women in two cadmium polluted counties in China. PLoS One, 2014; 9, e87817. doi:  10.1371/journal.pone.0087817
[47] Wang H, He L, Liu B, et al. Establishment and comparison of air-liquid interface culture systems for primary and immortalized swine tracheal epithelial cells. BMC Cell Biol, 2018; 19, 10. doi:  10.1186/s12860-018-0162-3
[48] Zhang GH, Ji BQ, Li Y, et al. Benchmark doses based on abnormality of WBC or micronucleus frequency in benzene-exposed Chinese workers. J Occup Environ Med, 2016; 58, e39−44. doi:  10.1097/JOM.0000000000000639
[49] Arts JH, Rennen MA, de Heer C. Inhaled formaldehyde: evaluation of sensory irritation in relation to carcinogenicity. Regul Toxicol Pharmacol, 2006; 44, 144−60.
[50] Efremenko AY, Campbell JL Jr, Dodd DE, et al. Time- and concentration-dependent genomic responses of the rat airway to inhaled nickel subsulfide. Toxicol Appl Pharmacol, 2014; 279, 441−54.
[51] Gutting BW, Rukhin A, Marchette D, et al. Dose-response modeling for inhalational anthrax in rabbits following single or multiple exposures. Risk Anal, 2016; 36, 2031−8. doi:  10.1111/risa.12564
[52] Maruyama W, Hirano S, Kobayashi T, et al. Quantitative risk analysis of particulate matter in the air: interspecies extrapolation with bioassay and mathematical models. Inhal Toxicol, 2006; 18, 1013−23.
[53] Schlosser PM, Lilly PD, Conolly RB, et al. Benchmark dose risk assessment for formaldehyde using airflow modeling and a single-compartment, DNA-protein cross-link dosimetry model to estimate human equivalent doses. Risk Anal, 2003; 23, 473−87. doi:  10.1111/1539-6924.00328
[54] Scully RR, Lam CW, James JT. Estimating safe human exposure levels for lunar dust using benchmark dose modeling of data from inhalation studies in rats. Inhal Toxicol, 2013; 25, 785−93.
[55] Taft SC, Hines SA. Benchmark dose analysis for Bacillus anthracis inhalation exposures in the nonhuman primate. Risk Anal, 2012; 32, 1750−68. doi:  10.1111/j.1539-6924.2012.01808.x