[1] Liu LJ, Zhu LC, Hu CC, et al. Rare cases of Pseudomonas aeruginosa meningitis in children: 10-year experience in a single center. J Child Neurol, 2024; 39, 113−21. doi:  10.1177/08830738241239703
[2] Oza Y, Patel R, Patel D, et al. Taming Pseudomonas aeruginosa AM26 the barbarian: targeting the PQS quorum sensing network using crude mandarin extract. Diagn Microbiol Infect Dis, 2024; 109, 116212. doi:  10.1016/j.diagmicrobio.2024.116212
[3] Vidaillac C, Chotirmall SH. Pseudomonas aeruginosa in bronchiectasis: infection, inflammation, and therapies. Expert Rev Respir Med, 2021; 15, 649−62. doi:  10.1080/17476348.2021.1906225
[4] Ozer E, Yaniv K, Chetrit E, et al. An inside look at a biofilm: Pseudomonas aeruginosa flagella biotracking. Sci Adv, 2021; 7, 2147−54.
[5] Hasbun R. Progress and challenges in bacterial meningitis: a review. JAMA, 2022; 328, 2147−54. doi:  10.1001/jama.2022.20521
[6] Horna G, Ruiz J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol Res, 2021; 246, 126719. doi:  10.1016/j.micres.2021.126719
[7] Anantharajah A, Mingeot-Leclercq MP, Van Bambeke F. Targeting the type three secretion system in Pseudomonas aeruginosa. Trends Pharmacol Sci, 2016; 37, 734−49. doi:  10.1016/j.tips.2016.05.011
[8] Ashworth EA, Wright RCT, Shears RK, et al. Exploiting lung adaptation and phage steering to clear pan-resistant Pseudomonas aeruginosa infections in vivo. Nat Commun, 2024; 15, 1547. doi:  10.1038/s41467-024-45785-z
[9] Daikos GL, da Cunha CA, Rossolini GM, et al. Review of ceftazidime-avibactam for the treatment of infections caused by Pseudomonas aeruginosa. Antibiotics, 2021; 10, 1126. doi:  10.3390/antibiotics10091126
[10] Koelman DLH, Brouwer MC, van de Beek D. Targeting the complement system in bacterial meningitis. Brain, 2019; 142, 3325−37. doi:  10.1093/brain/awz222
[11] Lucas MJ, Brouwer MC, Van De Beek D. Neurological sequelae of bacterial meningitis. J Infect, 2016; 73, 18−27. doi:  10.1016/j.jinf.2016.04.009
[12] Brouwer MC, Wijdicks EFM, van de Beek D. What’s new in bacterial meningitis. Intensive Care Med, 2016; 42, 415−7. doi:  10.1007/s00134-015-4057-x
[13] Le Guennec L, Coureuil M, Nassif X, et al. Strategies used by bacterial pathogens to cross the blood-brain barrier. Cell Microbiol, 2020; 22, e13132.
[14] Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer, 2020; 20, 26−41. doi:  10.1038/s41568-019-0205-x
[15] Campisi M, Shin Y, Osaki T, et al. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials, 2018; 180, 117−29. doi:  10.1016/j.biomaterials.2018.07.014
[16] Zha S, Liu HT, Li HD, et al. Functionalized nanomaterials capable of crossing the blood-brain barrier. ACS Nano, 2024; 18, 1820−45. doi:  10.1021/acsnano.3c10674
[17] Liebner S, Dijkhuizen RM, Reiss Y, et al. Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol, 2018; 135, 311−36. doi:  10.1007/s00401-018-1815-1
[18] Knowland D, Arac A, Sekiguchi KJ, et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron, 2014; 82, 603−17. doi:  10.1016/j.neuron.2014.03.003
[19] Díaz R, Torres-Miranda A, Orellana G, et al. Comparative genomic analysis of novel Bifidobacterium longum subsp. longum strains reveals functional divergence in the human gut microbiota. Microorganisms, 2021; 9, 1906. doi:  10.3390/microorganisms9091906
[20] Alcock BP, Raphenya AR, Lau TTY, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res, 2020; 48, D517−25. doi:  10.1093/nar/gkz1136
[21] Pang Z, Raudonis R, Glick BR, et al. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv, 2019; 37, 177−92. doi:  10.1016/j.biotechadv.2018.11.013
[22] Qin SG, Xiao W, Zhou CM, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Sig Transduct Target Ther, 2022; 7, 199. doi:  10.1038/s41392-022-01056-1
[23] Lin YC, Cornell WC, Jo J, et al. The Pseudomonas aeruginosa complement of lactate dehydrogenases enables use of D- and L-lactate and metabolic cross-feeding. mBio, 2018; 9, e00961−18.
[24] Jurišić V, Spužić I, Konjević G. A comparison of the NK cell cytotoxicity with effects of TNF-α against K-562 cells, determined by LDH release assay. Cancer Lett, 1999; 138, 67−72. doi:  10.1016/S0304-3835(99)00011-7
[25] Palmiotti CA, Prasad S, Naik P, et al. In vitro cerebrovascular modeling in the 21st century: current and prospective technologies. Pharm Res, 2014; 31, 3229−50. doi:  10.1007/s11095-014-1464-6
[26] Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol, 2002; 38, 323−37. doi:  10.1016/S1537-1891(02)00200-8
[27] Lucas MJ, Brouwer MC, Van De Beek D. Neurological sequelae of bacterial meningitis. J Infect, 2016; 73, 18-27.
[28] Roed C, Omland LH, Skinhoj P, et al. Educational achievement and economic self-sufficiency in adults after childhood bacterial meningitis. JAMA, 2013; 309, 1714−21. doi:  10.1001/jama.2013.3792
[29] Chen L, Tian XY, Zhang LY, et al. Brain glucose induces tolerance of Cryptococcus neoformans to amphotericin B during meningitis. Nat Microbiol, 2024; 9, 346−58. doi:  10.1038/s41564-023-01561-1
[30] Cheng ZH, Zheng YY, Yang W, et al. Pathogenic bacteria exploit transferrin receptor transcytosis to penetrate the blood-brain barrier. Proc Natl Acad Sci U S A, 2023; 120, e2307899120. doi:  10.1073/pnas.2307899120
[31] Pinho-Ribeiro FA, Deng LW, Neel DV, et al. Bacteria hijack a meningeal neuroimmune axis to facilitate brain invasion. Nature, 2023; 615, 472−81. doi:  10.1038/s41586-023-05753-x
[32] Zhao F, Wang QZ, Zhang Y, et al. Anaerobic biosynthesis of rhamnolipids by Pseudomonas aeruginosa: performance, mechanism and its application potential for enhanced oil recovery. Microb Cell Fact, 2021; 20, 103. doi:  10.1186/s12934-021-01593-4
[33] Lorusso AB, Carrara JA, Barroso CDN, et al. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int J Mol Sci, 2022; 23, 15779. doi:  10.3390/ijms232415779
[34] Cunrath O, Meinel DM, Maturana P, et al. Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains. EBioMedicine, 2019; 41, 479−87. doi:  10.1016/j.ebiom.2019.02.061
[35] Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev, 2015; 28, 337−418. doi:  10.1128/CMR.00117-14
[36] Zahedi Bialvaei A, Rahbar M, Hamidi-Farahani R, et al. Expression of RND efflux pumps mediated antibiotic resistance in Pseudomonas aeruginosa clinical strains. Microb Pathog, 2021; 153, 104789. doi:  10.1016/j.micpath.2021.104789
[37] Pancholi V, Fontan P, Jin H. Plasminogen-mediated group A streptococcal adherence to and pericellular invasion of human pharyngeal cells. Microb Pathog, 2003; 35, 293−303. doi:  10.1016/j.micpath.2003.08.004
[38] Coureuil M, Mikaty G, Miller F, et al. Meningococcal type IV Pili recruit the polarity complex to cross the brain endothelium. Science, 2009; 325, 83−7.
[39] Versele R, Sevin E, Gosselet F, et al. TNF-α and IL-1β modulate blood-brain barrier permeability and decrease amyloid-β peptide efflux in a human blood-brain barrier model. Int J Mol Sci, 2022; 23, 10235. doi:  10.3390/ijms231810235
[40] Haines RJ, Beard RS Jr, Wu MH. Protein tyrosine kinase 6 mediates TNFα-induced endothelial barrier dysfunction. Biochem Biophys Res Commun, 2015; 456, 190−6. doi:  10.1016/j.bbrc.2014.11.057
[41] Haines RJ, Beard RS Jr, Chen L, et al. Interleukin-1β mediates β-catenin-driven downregulation of claudin-3 and barrier dysfunction in Caco2 Cells. Dig Dis Sci, 2016; 61, 2252−61. doi:  10.1007/s10620-016-4145-y
[42] Villalba N, Ma YG, Gahan SA, et al. Lung infection by Pseudomonas aeruginosa induces neuroinflammation and blood–brain barrier dysfunction in mice. J Neuroinflammation, 2023; 20, 127. doi:  10.1186/s12974-023-02817-7