[1] |
WHO. Guidelines for drinking-water quality. 4th ed. World Health Organization. 2017. |
[2] |
Liang CM, Wu XY, Huang K, et al. Domain- and sex-specific effects of prenatal exposure to low levels of arsenic on children's development at 6 months of age: findings from the Ma'anshan birth cohort study in China. Environ Int, 2020; 135, 105112. doi: 10.1016/j.envint.2019.105112 |
[3] |
Tyler CR, Allan AM. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep, 2014; 1, 132−47. doi: 10.1007/s40572-014-0012-1 |
[4] |
Green R, Lanphear B, Hornung R, et al. Association between maternal fluoride exposure during pregnancy and IQ scores in offspring in Canada. JAMA Pediatr, 2019; 173, 940−8. doi: 10.1001/jamapediatrics.2019.1729 |
[5] |
Qiu YL, Chen XS, Yan XY, et al. Gut microbiota perturbations and neurodevelopmental impacts in offspring rats concurrently exposure to inorganic arsenic and fluoride. Environ Int, 2020; 140, 105763. doi: 10.1016/j.envint.2020.105763 |
[6] |
Li XJ, Brejnrod AD, Ernst M, et al. Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites. Environ Int, 2019; 126, 454−67. doi: 10.1016/j.envint.2019.02.048 |
[7] |
Leclercq S, Mian FM, Stanisz AM, et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat Commun, 2017; 8, 15062. doi: 10.1038/ncomms15062 |
[8] |
Cheng D, Li H, Zhou JP, et al. Chlorogenic acid relieves lead-induced cognitive impairments and hepato-renal damage via regulating the dysbiosis of the gut microbiota in mice. Food Funct, 2019; 10, 681−90. doi: 10.1039/C8FO01755G |
[9] |
Liu J, Wang HW, Lin L, et al. Intestinal barrier damage involved in intestinal microflora changes in fluoride-induced mice. Chemosphere, 2019; 234, 409−18. doi: 10.1016/j.chemosphere.2019.06.080 |
[10] |
Sherwin E, Bordenstein SR, Quinn JL, et al. Microbiota and the social brain. Science, 2019; 366, eaar2016. doi: 10.1126/science.aar2016 |
[11] |
Gonzales J, Marchix J, Aymeric L, et al. Fecal supernatant from adult with autism spectrum disorder alters digestive functions, intestinal epithelial barrier, and enteric nervous system. Microorganisms, 2021; 9, 1723. doi: 10.3390/microorganisms9081723 |
[12] |
Altimiras F, Garcia JA, Palacios-García I, et al. Altered gut microbiota in a fragile X syndrome mouse model. Front Neurosci, 2021; 15, 653120. doi: 10.3389/fnins.2021.653120 |
[13] |
Shahrizaila N, Lehmann HC, Kuwabara S. Guillain-Barré syndrome. Lancet, 2021; 397, 1214−28. doi: 10.1016/S0140-6736(21)00517-1 |
[14] |
Kesika P, Suganthy N, Sivamaruthi BS, et al. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer's disease. Life Sci, 2021; 264, 118627. doi: 10.1016/j.lfs.2020.118627 |
[15] |
Lu K, Abo RP, Schlieper KA, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect, 2014; 122, 284−91. doi: 10.1289/ehp.1307429 |
[16] |
Jia CN, Wei YP, Lan Y, et al. Comprehensive analysis of the metabolomic characteristics on the health lesions induced by chronic arsenic exposure: a metabolomics study. Int J Hyg Environ Health, 2019; 222, 434−45. doi: 10.1016/j.ijheh.2018.12.010 |
[17] |
Yue BJ, Zhang XH, Li WP, et al. Fluoride exposure altered metabolomic profile in rat serum. Chemosphere, 2020; 258, 127387. doi: 10.1016/j.chemosphere.2020.127387 |
[18] |
Sharon G, Garg N, Debelius J, et al. Specialized metabolites from the microbiome in health and disease. Cell Metab, 2014; 20, 719−30. doi: 10.1016/j.cmet.2014.10.016 |
[19] |
Pershing ML, Bortz DM, Pocivavsek A, et al. Elevated levels of kynurenic acid during gestation produce neurochemical, morphological, and cognitive deficits in adulthood: implications for schizophrenia. Neuropharmacology, 2015; 90, 33−41. doi: 10.1016/j.neuropharm.2014.10.017 |
[20] |
Zhang YH, Wang DW, Xu SF, et al. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol, 2018; 14, 535−48. doi: 10.1016/j.redox.2017.11.001 |
[21] |
Wang DF, Sun XY, Yan JJ, et al. Alterations of eicosanoids and related mediators in patients with schizophrenia. J Psychiatr Res, 2018; 102, 168−78. doi: 10.1016/j.jpsychires.2018.04.002 |
[22] |
Zhang YJ, Jiang XJ, Zhang J, et al. Heterozygous disruption of beclin 1 mitigates arsenite-induced neurobehavioral deficits via reshaping gut microbiota-brain axis. J Hazard Mater, 2020; 398, 122748. doi: 10.1016/j.jhazmat.2020.122748 |
[23] |
Xin JG, Wang HS, Sun N, et al. Probiotic alleviate fluoride-induced memory impairment by reconstructing gut microbiota in mice. Ecotoxicol Environ Saf, 2021; 215, 112108. doi: 10.1016/j.ecoenv.2021.112108 |
[24] |
Idowu OS, Duckworth RM, Valentine RA, et al. Biomarkers for the assessment of exposure to fluoride in adults. Caries Res, 2021; 55, 292−300. doi: 10.1159/000516091 |
[25] |
Hughes MF. Biomarkers of exposure: a case study with inorganic arsenic. Environ Health Perspect, 2006; 114, 1790−6. doi: 10.1289/ehp.9058 |
[26] |
Zhu YP, Xi SH, Li MY, et al. Fluoride and arsenic exposure affects spatial memory and activates the ERK/CREB signaling pathway in offspring rats. NeuroToxicology, 2017; 59, 56−64. doi: 10.1016/j.neuro.2017.01.006 |
[27] |
Wang SX, Wang ZH, Cheng XT, et al. Arsenic and fluoride exposure in drinking water: children's IQ and growth in Shanyin county, Shanxi province, China. Environ Health Perspect, 2007; 115, 643−7. doi: 10.1289/ehp.9270 |
[28] |
Du XY, Zhang J, Zhang X, et al. Persistence and reversibility of arsenic-induced gut microbiome and metabolome shifts in male rats after 30-days recovery duration. Sci Total Environ, 2021; 776, 145972. doi: 10.1016/j.scitotenv.2021.145972 |
[29] |
Chen FB, Luo Y, Li CJ, et al. Sub-chronic low-dose arsenic in rice exposure induces gut microbiome perturbations in mice. Ecotoxicol Environ Saf, 2021; 227, 112934. doi: 10.1016/j.ecoenv.2021.112934 |
[30] |
Li D, Yang Y, Li YX, et al. Changes induced by chronic exposure to high arsenic concentrations in the intestine and its microenvironment. Toxicology, 2021; 456, 152767. doi: 10.1016/j.tox.2021.152767 |
[31] |
Wang JT, Hu W, Yang HL, et al. Arsenic concentrations, diversity and co-occurrence patterns of bacterial and fungal communities in the feces of mice under sub-chronic arsenic exposure through food. Environ Int, 2020; 138, 105600. doi: 10.1016/j.envint.2020.105600 |
[32] |
Chen GJ, Hu PC, Xu ZC, et al. The beneficial or detrimental fluoride to gut microbiota depends on its dosages. Ecotoxicol Environ Saf, 2021; 209, 111732. doi: 10.1016/j.ecoenv.2020.111732 |
[33] |
Saji N, Niida S, Murotani K, et al. Analysis of the relationship between the gut microbiome and dementia: a cross-sectional study conducted in Japan. Sci Rep, 2019; 9, 1008. doi: 10.1038/s41598-018-38218-7 |
[34] |
Rong WW, Han KF, Zhao ZH, et al. The protective effect of Xanthoceras sorbifolia Bunge husks on cognitive disorder based on metabolomics and gut microbiota analysis. J Ethnopharmacol, 2021; 279, 113094. doi: 10.1016/j.jep.2020.113094 |
[35] |
Chen DL, Qi LK, Guo YR, et al. CircNF1-419 improves the gut microbiome structure and function in AD-like mice. Aging, 2020; 12, 260−87. doi: 10.18632/aging.102614 |
[36] |
Asnicar F, Berry SE, Valdes AM, et al. Microbiome connections with host metabolism and habitual diet from 1, 098 deeply phenotyped individuals. Nat Med, 2021; 27, 321−32. doi: 10.1038/s41591-020-01183-8 |
[37] |
Chai YY, Luo JY, Bao YH. Effects of Polygonatum sibiricum saponin on hyperglycemia, gut microbiota composition and metabolic profiles in type 2 diabetes mice. Biomed Pharmacother, 2021; 143, 112155. doi: 10.1016/j.biopha.2021.112155 |
[38] |
Chakraborti B, Verma D, Guhathakurta S, et al. Gender-specific effect of 5-HT and 5-HIAA on threshold level of behavioral symptoms and sex-bias in prevalence of autism spectrum disorder. Front Neurosci, 2019; 13, 1375. |
[39] |
Takahashi K, Mizukami H, Osonoi S, et al. Inhibitory effects of xanthine oxidase inhibitor, topiroxostat, on development of neuropathy in db/db mice. Neurobiol Dis, 2021; 155, 105392. doi: 10.1016/j.nbd.2021.105392 |
[40] |
Nelson-Mora J, Escobar ML, Rodríguez-Durán L, et al. Gestational exposure to inorganic arsenic (iAs3+) alters glutamate disposition in the mouse hippocampus and ionotropic glutamate receptor expression leading to memory impairment. Arch Toxicol, 2018; 92, 1037−48. doi: 10.1007/s00204-017-2111-x |
[41] |
Mo TT, Dai H, Du H, et al. Gas chromatography-mass spectrometry based metabolomics profile of hippocampus and cerebellum in mice after chronic arsenic exposure. Environ Toxicol, 2019; 34, 103−11. doi: 10.1002/tox.22662 |
[42] |
Ning X, Li B, Ku TT, et al. Comprehensive hippocampal metabolite responses to PM2.5 in young mice. Ecotoxicol Environ Saf, 2018; 165, 36−43. doi: 10.1016/j.ecoenv.2018.08.080 |
[43] |
Zhang RY, Tu JB, Ran RT, et al. Using the metabolome to understand the mechanisms linking chronic arsenic exposure to microglia activation, and learning and memory impairment. Neurotox Res, 2021; 39, 720−39. doi: 10.1007/s12640-020-00286-x |
[44] |
Jordan W, Dobrowolny H, Bahn S, et al. Oxidative stress in drug-naïve first episode patients with schizophrenia and major depression: effects of disease acuity and potential confounders. Eur Arch Psychiatry Clin Neurosci, 2018; 268, 129−43. doi: 10.1007/s00406-016-0749-7 |
[45] |
Minhas PS, Latif-Hernandez A, McReynolds MR, et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature, 2021; 590, 122−8. doi: 10.1038/s41586-020-03160-0 |
[46] |
Dos Santos SM, Romeiro CFR, Rodrigues CA, et al. Mitochondrial dysfunction and alpha-lipoic acid: beneficial or harmful in Alzheimer's disease? Oxid Med Cell Longev, 2019; 2019, 8409329. |
[47] |
Nurchi VM, Djordjevic AB, Crisponi G, et al. Arsenic toxicity: molecular targets and therapeutic agents. Biomolecules, 2020; 10, 235. doi: 10.3390/biom10020235 |