[1] WHO. World health statistics 2021: monitoring health for the SDGs, sustainable development goals. World Health Organization. 2021.
[2] Benziger CP, Roth GA, Moran AE. The global burden of disease study and the preventable burden of NCD. Glob Heart, 2016; 11, 393−7. doi:  10.1016/j.gheart.2016.10.024
[3] Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet, 2002; 360, 1903−13. doi:  10.1016/S0140-6736(02)11911-8
[4] Stolarz-Skrzypek K, Kuznetsova T, Thijs L, et al. Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA, 2011; 305, 1777−85. doi:  10.1001/jama.2011.574
[5] Du XF, Fang L, Xu JW, et al. Association between 24-h urinary sodium and potassium excretion and blood pressure among Chinese adults aged 18-69 years. Sci Rep, 2021; 11, 3474. doi:  10.1038/s41598-021-83049-8
[6] Graudal N, Hubeck-Graudal T, Jürgens G, et al. Dose-response relation between dietary sodium and blood pressure: a meta-regression analysis of 133 randomized controlled trials. Am J Clin Nutr, 2019; 109, 1273−8. doi:  10.1093/ajcn/nqy384
[7] Appel LJ, Frohlich ED, Hall JE, et al. The importance of population-wide sodium reduction as a means to prevent cardiovascular disease and stroke: a call to action from the American Heart Association. Circulation, 2011; 123, 1138−43. doi:  10.1161/CIR.0b013e31820d0793
[8] Umesawa M, Iso H, Date C, et al. Relations between dietary sodium and potassium intakes and mortality from cardiovascular disease: the Japan collaborative cohort study for evaluation of cancer risks. Am J Clin Nutr, 2008; 88, 195−202. doi:  10.1093/ajcn/88.1.195
[9] O'Donnell MJ, Yusuf S, Mente A, et al. Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA, 2011; 306, 2229−38.
[10] Cook NR, Appel LJ, Whelton PK. Lower levels of sodium intake and reduced cardiovascular risk. Circulation, 2014; 129, 981−9. doi:  10.1161/CIRCULATIONAHA.113.006032
[11] Kalogeropoulos AP, Georgiopoulou VV, Murphy RA, et al. Dietary sodium content, mortality, and risk for cardiovascular events in older adults: the Health, Aging, and Body Composition (Health ABC) Study. JAMA Intern Med, 2015; 175, 410−9. doi:  10.1001/jamainternmed.2014.6278
[12] Singer P, Cohen H, Alderman M. Assessing the associations of sodium intake with long-term all-cause and cardiovascular mortality in a hypertensive cohort. Am J Hypertens, 2015; 28, 335−42. doi:  10.1093/ajh/hpu141
[13] Prentice RL, Huang Y, Neuhouser ML, et al. Associations of biomarker-calibrated sodium and potassium intakes with cardiovascular disease risk among postmenopausal women. Am J Epidemiol, 2017; 186, 1035−43. doi:  10.1093/aje/kwx238
[14] O'Donnell M, Mente A, Rangarajan S, et al. Joint association of urinary sodium and potassium excretion with cardiovascular events and mortality: prospective cohort study. BMJ, 2019; 364, l772.
[15] Campbell NRC, He FJ, Tan M, et al. The international consortium for quality research on dietary sodium/salt (TRUE) position statement on the use of 24-hour, spot, and short duration (< 24 hours) timed urine collections to assess dietary sodium intake. J Clin Hypertens, 2019; 21, 700−9. doi:  10.1111/jch.13551
[16] Lucko AM, Doktorchik C, Woodward M, et al. Percentage of ingested sodium excreted in 24-hour urine collections: a systematic review and meta-analysis. J Clin Hypertens, 2018; 20, 1220−9. doi:  10.1111/jch.13353
[17] McLean RM. Measuring population sodium intake: a review of methods. Nutrients, 2014; 6, 4651−62. doi:  10.3390/nu6114651
[18] Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg, 2010; 8, 336−41. doi:  10.1016/j.ijsu.2010.02.007
[19] Hamling J, Lee P, Weitkunat R, et al. Facilitating meta-analyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category. Stat Med, 2008; 27, 954−70. doi:  10.1002/sim.3013
[20] WHO. Guideline: sodium intake for adults and children. WHO. 2012.
[21] DeSalvo KB, Olson R, Casavale KO. Dietary guidelines for americans. JAMA, 2016; 315, 457−8. doi:  10.1001/jama.2015.18396
[22] Powles J, Fahimi S, Micha R, et al. Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open, 2013; 3, e003733. doi:  10.1136/bmjopen-2013-003733
[23] Ades AE, Lu G, Higgins JPT. The interpretation of random-effects meta-analysis in decision models. Med Decis Making, 2005; 25, 646−54. doi:  10.1177/0272989X05282643
[24] Ma Y, He FJ, Sun Q, et al. 24-hour urinary sodium and potassium excretion and cardiovascular risk. N Engl J Med, 2022; 386, 252−63. doi:  10.1056/NEJMoa2109794
[25] Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ, 2003; 327, 557−60. doi:  10.1136/bmj.327.7414.557
[26] Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ, 1997; 315, 629−34. doi:  10.1136/bmj.315.7109.629
[27] Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics, 1994; 50, 1088−101. doi:  10.2307/2533446
[28] Orsini N, Li RF, Wolk A, et al. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol, 2012; 175, 66−73. doi:  10.1093/aje/kwr265
[29] Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol, 1992; 135, 1301−9. doi:  10.1093/oxfordjournals.aje.a116237
[30] Harre FE Jr, Lee KL, Pollock BG. Regression models in clinical studies: determining relationships between predictors and response. J Natl Cancer Inst, 1988; 80, 1198−202. doi:  10.1093/jnci/80.15.1198
[31] Joosten MM, Gansevoort RT, Mukamal KJ, et al. Sodium excretion and risk of developing coronary heart disease. Circulation, 2014; 129, 1121−8. doi:  10.1161/CIRCULATIONAHA.113.004290
[32] Pfister R, Michels G, Sharp SJ, et al. Estimated urinary sodium excretion and risk of heart failure in men and women in the EPIC-Norfolk study. Eur J Heart Fail, 2014; 16, 394−402. doi:  10.1002/ejhf.56
[33] Vuori MA, Harald K, Jula A, et al. 24-h urinary sodium excretion and the risk of adverse outcomes. Ann Med, 2020; 52, 488−96. doi:  10.1080/07853890.2020.1780469
[34] Wang YJ, Chien KL, Hsu HC, et al. Urinary sodium excretion and the risk of CVD: a community-based cohort study in Taiwan. Br J Nutr, 2022; 127, 1086−97. doi:  10.1017/S0007114521001768
[35] Wuopio J, Orho-Melander M, Ärnlöv J, et al. Estimated salt intake and risk of atrial fibrillation in a prospective community-based cohort. J Intern Med, 2021; 289, 700−8. doi:  10.1111/joim.13194
[36] Jayedi A, Ghomashi F, Zargar MS, et al. Dietary sodium, sodium-to-potassium ratio, and risk of stroke: a systematic review and nonlinear dose-response meta-analysis. Clin Nutr, 2019; 38, 1092−100. doi:  10.1016/j.clnu.2018.05.017
[37] Graudal N, Jürgens G, Baslund B, et al. Compared with usual sodium intake, low- and excessive-sodium diets are associated with increased mortality: a meta-analysis. Am J Hypertens, 2014; 27, 1129−37. doi:  10.1093/ajh/hpu028
[38] Wang YJ, Yeh TL, Shih MC, et al. Dietary sodium intake and risk of cardiovascular disease: a systematic review and dose-response meta-analysis. Nutrients, 2020; 12, 2934. doi:  10.3390/nu12102934
[39] Weinberger MH. Salt sensitivity of blood pressure in humans. Hypertension, 1996; 27, 481−90. doi:  10.1161/01.HYP.27.3.481
[40] Lother A, Fürst D, Bergemann S, et al. Deoxycorticosterone acetate/salt-induced cardiac but not renal injury is mediated by endothelial mineralocorticoid receptors independently from blood pressure. Hypertension, 2016; 67, 130−8. doi:  10.1161/HYPERTENSIONAHA.115.06530
[41] Visser FW, Boonstra AH, Lely AT, et al. Renal response to angiotensin II is blunted in sodium-sensitive normotensive men. Am J Hypertens, 2008; 21, 323−8. doi:  10.1038/ajh.2007.63
[42] Patel Y, Joseph J. Sodium intake and heart failure. Int J Mol Sci, 2020; 21, 9474. doi:  10.3390/ijms21249474
[43] O'Donnell M, Mente A, Rangarajan S, et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med, 2014; 371, 612−23. doi:  10.1056/NEJMoa1311889
[44] Cook NR, Obarzanek E, Cutler JA, et al. Joint effects of sodium and potassium intake on subsequent cardiovascular disease: the trials of hypertension prevention follow-up study. Arch Intern Med, 2009; 169, 32−40. doi:  10.1001/archinternmed.2008.523
[45] Wen XX, Zhou L, Stamler J, et al. Agreement between 24-h dietary recalls and 24-h urine collections for estimating sodium intake in China, Japan, UK, USA: the international study of macro- and micro-nutrients and blood pressure. J Hypertens, 2019; 37, 814−19. doi:  10.1097/HJH.0000000000001941
[46] He FJ, Ma Y, Campbell NRC, et al. Formulas to estimate dietary sodium intake from spot urine alter sodium-mortality relationship. Hypertension, 2019; 74, 572−80. doi:  10.1161/HYPERTENSIONAHA.119.13117
[47] Cappuccio FP, Beer M, Strazzullo P, et al. Population dietary salt reduction and the risk of cardiovascular disease. A scientific statement from the European salt action network. Nutr Metab Cardiovasc Dis, 2019; 29, 107−14.
[48] Flegal KM, Keyl PM, Nieto FJ. Differential misclassification arising from nondifferential errors in exposure measurement. Am J Epidemiol, 1991; 134, 1233−44. doi:  10.1093/oxfordjournals.aje.a116026
[49] Poggio R, Gutierrez L, Matta MG, et al. Daily sodium consumption and CVD mortality in the general population: systematic review and meta-analysis of prospective studies. Public Health Nutr, 2015; 18, 695−704. doi:  10.1017/S1368980014000949