[1] World Health Organization. Coronavirus disease (COVID-19) pandemic.https://www.who.int/emergencies/diseases/novel-coronavirus-2019. [2021-06-17].
[2] Baidu. Real-time notification of new peneumonia (last updated: 2021/6/17). https://voice.baidu.com/act/newpneumonia/newpneumonia/?from=osari_aladin_top1. [2021-06-17]. (In Chinese)
[3] World Health Organization. Tracking SARS-CoV-2 variants. https://www.who.int/health-topics/nipah-virus-infection/tracking-SARS-CoV-2-variants#tab=tab_1. [2021-06-17].
[4] Song N, Cui GL, Zeng QL. Genomic epidemiology of SARS-CoV-2 from mainland China with newly obtained genomes from Henan province. Front Microbiol, 2021; 12, 673855. doi:  10.3389/fmicb.2021.673855
[5] Xiong YB, Tian YX, Ma Y, et al. Factors defining the development of severe illness in patients with COVID-19: a retrospective study. Biomed Environ Sci, 2021; 34, 984−91.
[6] Ma Y, Zhu DS, Chen RB, et al. Association of overlapped and un-overlapped comorbidities with COVID-19 severity and treatment outcomes: a retrospective cohort study from nine provinces in China. Biomed Environ Sci, 2020; 33, 893−905.
[7] Li LH, Tu HW, Liang D, et al. Kinetic characteristics of neutralizing antibody responses vary among patients with COVID-19. Biomed Environ Sci, 2021; 34, 976−83.
[8] Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature, 2020; 579, 265−9. doi:  10.1038/s41586-020-2008-3
[9] Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol, 2019; 17, 181−92. doi:  10.1038/s41579-018-0118-9
[10] Zhu N, Zhang DY, Wang WL, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med, 2020; 382, 727−33. doi:  10.1056/NEJMoa2001017
[11] Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020; 579, 270−3. doi:  10.1038/s41586-020-2012-7
[12] Gupta RK. Will SARS-CoV-2 variants of concern affect the promise of vaccines? Nat Rev Immunol, 2021; 21, 340-1.
[13] Tegally H, Wilkinson E, Giovanetti M, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv. 2020.
[14] Volz E, Mishra S, Chand M, et al. Transmission of SARS-CoV-2 Lineage B. 1.1. 7 in England: Insights from linking epidemiological and genetic data. medRxiv. 2021.
[15] Iacobucci G. Covid-19: local councils initiate surge vaccination to tackle B. 1. 617. 2 variant. BMJ, 2021; 373, n1361.
[16] Guangzhou Municipal Health Commission. Coronavirus disease (COVID-19) pandemic. http://wjw.gz.gov.cn/ztzl/xxfyyqfk/yqtb/content/post_7284283.html. [2021-5]
[17] Galloway SE, Paul P, MacCannell DR, et al. Emergence of SARS-CoV-2 B. 1.1. 7 lineage - United States, December 29, 2020-January 12, 2021. MMWR Morb Mortal Wkly Rep, 2021; 70, 95-9.
[18] Horspool AM, Ye CJ, Wong TY, et al. SARS-CoV-2 B. 1.1. 7 and B. 1.351 variants of concern induce lethal disease in K18-hACE2 transgenic mice despite convalescent plasma therapy. bioRxiv, 2021.
[19] Aleem A, Akbar SAB, Slenker AK. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19). StatPearls Publishing. 2021.
[20] Maison DP, Nerurkar VR. Research methodology to define the introduction of the SARS-CoV-2 B. 1.429 variant in Hawaii. Res Sq, 2021.
[21] Campoy PJS, Buenestado-Serrano S, Pérez-Lago L, et al. First importations of SARS-CoV-2 P. 1 and P. 2 variants from Brazil to Spain and early community transmission. Enferm Infecc Microbiol Clin, 2021; 40, 262-5.
[22] Ozer EA, Simons LM, Adewumi OM, et al. High prevalence of SARS-CoV-2 B. 1.1. 7 (UK variant) and the novel B. 1.525 lineage in Oyo State, Nigeria. medRxiv, 2021.
[23] Yurkovetskiy L, Wang X, Pascal KE, et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell, 2020; 183, 739−51.e8. doi:  10.1016/j.cell.2020.09.032
[24] Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell, 2020; 182, 812−27.e19. doi:  10.1016/j.cell.2020.06.043
[25] Volz E, Hill V, McCrone JT, et al. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell, 2021; 184, 64−75.e11. doi:  10.1016/j.cell.2020.11.020
[26] Nyayanit DA, Sarkale P, Baradkar S, et al. Transcriptome & viral growth analysis of SARS-CoV-2-infected Vero CCL-81 cells. Indian J Med Res, 2020; 152, 70−6.
[27] Fogeron ML, Montserret R, Zehnder J, et al. SARS-CoV-2 ORF7b: is a bat virus protein homologue a major cause of COVID-19 symptoms? bioRxiv, 2021.
[28] Kaushal N, Gupta Y, Goyal M, et al. Mutational frequencies of SARS-CoV-2 genome during the beginning months of the outbreak in USA. Pathogens, 2020; 9, 565. doi:  10.3390/pathogens9070565
[29] Shi CS, Qi HY, Boularan C, et al. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J Immunol, 2014; 193, 3080−9. doi:  10.4049/jimmunol.1303196
[30] Redondo N, Zaldívar-López S, Garrido JJ, et al. SARS-CoV-2 accessory proteins in viral pathogenesis: knowns and unknowns. Front Immunol, 2021; 12, 708264. doi:  10.3389/fimmu.2021.708264
[31] Kreimendahl S, Rassow J. The mitochondrial outer membrane protein tom70-mediator in protein traffic, membrane contact sites and innate immunity. Int J Mol Sci, 2020; 21, 7262. doi:  10.3390/ijms21197262
[32] Colson P, Fournier PE, Chaudet H, et al. Analysis of SARS-CoV-2 variants from 24, 181 patients exemplifies the role of globalization and zoonosis in pandemics. Front Microbiol, 2022; 12, 786233. doi:  10.3389/fmicb.2021.786233