[1] Kim Y, Seo J, Kim JY, et al. Characterization of PM2.5 and identification of transported secondary and biomass burning contribution in Seoul, Korea. Environ Sci Pollut Res Int, 2018; 25, 4330−43. doi:  10.1007/s11356-017-0772-x
[2] Hamra GB, Guha N, Cohen A, et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect, 2014; 122, 906−11. doi:  10.1289/ehp/1408092
[3] Shi L, Zanobetti A, Kloog I, et al. Low-concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study. Environ Health Perspect, 2016; 124, 46−52. doi:  10.1289/ehp.1409111
[4] Di Q, Wang Y, Zanobetti A, et al. Air pollution and mortality in the medicare population. N Engl J Med, 2017; 376, 2513−22. doi:  10.1056/NEJMoa1702747
[5] Fann N, Baker KR, Chan EAW, et al. Assessing human health PM2.5 and ozone impacts from U.S. oil and natural gas sector emissions in 2025. Environ Sci Technol, 2018; 52, 8095−103. doi:  10.1021/acs.est.8b02050
[6] Gilli G, Pignata C, Schilirò T, et al. The mutagenic hazards of environmental PM2.5 in Turin. Environ Res, 2007; 103, 168−75. doi:  10.1016/j.envres.2006.08.006
[7] Jamhari A A, Sahani M, Latif M T, et al. Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmosph Environ, 2014; 86, 16−27. doi:  10.1016/j.atmosenv.2013.12.019
[8] Valle-Hernandez BL, Mugica-Alvarez V, Salinas-Talavera E, et al. Temporal variation of nitro-polycyclic aromatic hydrocarbons in PM10 and PM2.5 collected in Northern Mexico City. Sci Total Environ, 2010; 408, 5429−38. doi:  10.1016/j.scitotenv.2010.07.065
[9] Liu Q, Baumgartner J, Zhang Y, et al. Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing. Environ Sci Technol, 2014; 48, 12920−9. doi:  10.1021/es5029876
[10] Liu Q, Baumgartner J, Schauer JJ, et al. Source apportionment of fine-particle, water-soluble organic nitrogen and its association with the inflammatory potential of lung epithelial cells. Environ Sci Technol, 2019; 53, 9845−54. doi:  10.1021/acs.est.9b02523
[11] Liu Q, Baumgartner J, Zhang Y. Source apportionment of Beijing air pollution during a severe winter haze event and associated pro-inflammatory responses in lung epithelial cells. Atmos Environ, 2016; 126, 28−35. doi:  10.1016/j.atmosenv.2015.11.031
[12] Liu W, Xu Y, Liu W. Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: seasonal variation and source apportionment. Environ Pollut, 2018; 236, 514−28. doi:  10.1016/j.envpol.2018.01.116
[13] Liu Q, Lu Z, Xiong Y, et al. , Oxidative potential of ambient PM2.5 in Wuhan and its comparisons with eight areas of China. Sci Total Environ, 2020; 701, 134844. doi:  10.1016/j.scitotenv.2019.134844
[14] Loomis D, Huang W, Chen G. The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. Chin J Cancer, 2014; 33, 189−96. doi:  10.5732/cjc.014.10028
[15] Gualtieri M, Longhin E, Mattioli M, et al. Gene expression profiling of A549 cells exposed to Milan PM2.5. Toxicol Lett, 2012; 209, 136−45. doi:  10.1016/j.toxlet.2011.11.015
[16] Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut, 2008; 151, 362−7. doi:  10.1016/j.envpol.2007.06.012
[17] Feng L, Yang X, Asweto CO, et al. Low-dose combined exposure of nanoparticles and heavy metal compared with PM2.5 in human myocardial AC16 cells. Environ Sci Pollut Res Int, 2017; 24, 27767−77. doi:  10.1007/s11356-017-0228-3
[18] Wang J, Ho S, Cao J, et al. Characteristics and major sources of carbonaceous aerosols in PM2.5 from Sanya, China. Sci Total Environ, 2015; 530-531, 110−9. doi:  10.1016/j.scitotenv.2015.05.005
[19] Dowling VA, Sheehan D. Proteomics as a route to identification of toxicity targets in environmental toxicology. Proteomics, 2006; 6, 5597−604. doi:  10.1002/pmic.200600274
[20] Jeon YM, Son BS, Lee MY. Proteomic identification of the differentially expressed proteins in human lung epithelial cells by airborne particulate matter. J Appl Toxicol, 2011; 31, 45−52. doi:  10.1002/jat.1566
[21] Xiao GG, Wang M, Li N, et al. Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J Biol Chem, 2003; 278, 50781−90. doi:  10.1074/jbc.M306423200
[22] Tyanova S, Temu T, Sinitcyn P, et al. The Perseus computational platform for comprehensive analysis of (prote) omics data. Nat Methods, 2016; 13, 731−40. doi:  10.1038/nmeth.3901
[23] Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000; 25, 25−9. doi:  10.1038/75556
[24] Kanehisa M, Goto S, Kawashima S, et al. The KEGG databases at GenomeNet. Nucleic Acids Res, 2002; 30, 42−6. doi:  10.1093/nar/30.1.42
[25] Wang Z, Liu G, Jiang J. Profiling of apoptosis- and autophagy-associated molecules in human lung cancer A549 cells in response to cisplatin treatment using stable isotope labeling with amino acids in cell culture. Int J Oncol, 2019; 54, 1071−85.
[26] Paul A, Krelin Y, Arif T, et al. A new role for the mitochondrial pro-apoptotic protein SMAC/Diablo in phospholipid synthesis associated with tumorigenesis. Mol Ther, 2017; 26, 680−94.
[27] Gao W, An C, Xue X, et al. Mass spectrometric analysis identifies AIMP1 and LTA4H as FSCN1-binding proteins in laryngeal squamous cell carcinoma. Proteomics, 2019; 19, e1900059. doi:  10.1002/pmic.201900059