[1] Nobusawa E, Aoyama T, Kato H, et al. Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology, 1991; 182, 475−85. doi:  10.1016/0042-6822(91)90588-3
[2] Bui CM, Chughtai AA, Adam DC, et al. An overview of the epidemiology and emergence of influenza A infection in humans over time. Arch Public Health, 2017; 75, 15. doi:  10.1186/s13690-017-0182-z
[3] Wang X, Fang S, Lu X, et al. Seroprevalence to avian influenza A(H7N9) virus among poultry workers and the general population in southern China: a longitudinal study. Clin Infect Dis, 2014; 59, e76−83. doi:  10.1093/cid/ciu399
[4] Gu J, Xie Z, Gao Z, et al. H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet, 2007; 370, 1137−45. doi:  10.1016/S0140-6736(07)61515-3
[5] Schmidt AG, Therkelsen MD, Stewart S, et al. Viral receptor-binding site antibodies with diverse germline origins. Cell, 2015; 161, 1026−34. doi:  10.1016/j.cell.2015.04.028
[6] Whittle JR, Zhang R, Khurana S, et al. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc Natl Acad Sci USA, 2011; 108, 14216−21. doi:  10.1073/pnas.1111497108
[7] Raymond DD, Bajic G, Ferdman J, et al. Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody. Proc Natl Acad Sci USA, 2018; 115, 168−73. doi:  10.1073/pnas.1715471115
[8] Throsby M, Van Den Brink E, Jongeneelen M, et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One, 2008; 3, e3942. doi:  10.1371/journal.pone.0003942
[9] Sui J, Hwang WC, Perez S, et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nal Struct Mol Biol, 2009; 16, 265−73.
[10] Bangaru S, Zhang H, Gilchuk IM, et al. A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA. Nat Commun, 2018; 9, 2669. doi:  10.1038/s41467-018-04704-9
[11] Joyce MG, Wheatley AK, Thomas PV, et al. Vaccine-induced antibodies that neutralize group 1 and group 2 influenza A viruses. Cell, 2016; 166, 609−23. doi:  10.1016/j.cell.2016.06.043
[12] Kallewaard NL, Corti D, Collins PJ, et al. Structure and function analysis of an antibody recognizing all influenza A subtypes. Cell, 2016; 166, 596−608. doi:  10.1016/j.cell.2016.05.073
[13] Wu NC, Yamayoshi S, Ito M, et al. Recurring and adaptable binding motifs in broadly neutralizing antibodies to influenza virus are encoded on the D3-9 segment of the Ig gene. Cell Host Microbe, 2018; 24, 569−78 e4. doi:  10.1016/j.chom.2018.09.010
[14] Dreyfus C, Laursen NS, Kwaks T, et al. Highly conserved protective epitopes on influenza B viruses. Science, 2012; 337, 1343−8. doi:  10.1126/science.1222908
[15] Lang S, Xie J, Zhu X, et al. Antibody 27F3 broadly targets influenza A group 1 and 2 hemagglutinins through a further variation in VH1-69 antibody orientation on the HA stem. Cell reports, 2017; 20, 2935−43. doi:  10.1016/j.celrep.2017.08.084
[16] Wyrzucki A, Bianchi M, Kohler I, et al. Heterosubtypic Antibodies to Influenza A Virus Have Limited Activity against Cell-Bound Virus but Are Not Impaired by Strain-Specific Serum Antibodies. Journal of Virology, 2015; 89, 3136−44.
[17] Avnir Y, Tallarico AS, Zhu Q, et al. Molecular signatures of hemagglutinin stem-directed heterosubtypic human neutralizing antibodies against influenza A viruses. PLoS Pathog, 2014; 10, e1004103. doi:  10.1371/journal.ppat.1004103
[18] Avnir Y, Watson CT, Glanville J, et al. IGHV1-69 polymorphism modulates anti-influenza antibody repertoires, correlates with IGHV utilization shifts and varies by ethnicity. Sci Rep, 2016; 6, 20842. doi:  10.1038/srep20842
[19] Pappas L, Foglierini M, Piccoli L, et al. Rapid development of broadly influenza neutralizing antibodies through redundant mutations. Nature, 2014; 516, 418−22. doi:  10.1038/nature13764
[20] Lingwood D, Mctamney PM, Yassine HM, et al. Structural and genetic basis for development of broadly neutralizing influenza antibodies. Nature, 2012; 489, 566−70. doi:  10.1038/nature11371
[21] Hu H, Voss J, Zhang G, et al. A human antibody recognizing a conserved epitope of H5 hemagglutinin broadly neutralizes highly pathogenic avian influenza H5N1 viruses. J Virol , 2012; 86, 2978−89. doi:  10.1128/JVI.06665-11
[22] Qian M, Hu H, Zuo T, et al. Unraveling of a neutralization mechanism by two human antibodies against conserved epitopes in the globular head of H5 hemagglutinin. J Virol, 2013; 87, 3571−7. doi:  10.1128/JVI.01292-12
[23] Simmons CP, Bernasconi NL, Suguitan AL, et al. Prophylactic and therapeutic efficacy of human monoclonal antibodies against H5N1 influenza. PLoS Med, 2007; 4, e178. doi:  10.1371/journal.pmed.0040178
[24] Kashyap AK, Steel J, Oner AF, et al. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc Natl Acad Sci U S A, 2008; 105, 5986−91. doi:  10.1073/pnas.0801367105
[25] Tiller T. Single B cell antibody technologies. New biotechnology, 2011; 28, 453−7. doi:  10.1016/j.nbt.2011.03.014
[26] Tiller T, Meffre E, Yurasov S, et al. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J Immunol Methods, 2008; 329, 112−24. doi:  10.1016/j.jim.2007.09.017
[27] Tiller T, Schuster I, Deppe D, et al. A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs, 2013; 5, 445−70. doi:  10.4161/mabs.24218
[28] Du N, Zhou J, Lin X, et al. Differential activation of NK cells by influenza A pseudotype H5N1 and 1918 and 2009 pandemic H1N1 viruses. J Virol, 2010; 84, 7822−31. doi:  10.1128/JVI.00069-10
[29] Jegaskanda S, Vandenberg K, Laurie KL, et al. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity in intravenous immunoglobulin as a potential therapeutic against emerging influenza viruses. J Infect Dis, 2014; 210, 1811−22. doi:  10.1093/infdis/jiu334
[30] Scheid JF, Mouquet H, Ueberheide B, et al. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science, 2011; 333, 1633−7. doi:  10.1126/science.1207227
[31] Andrews SF, Joyce MG, Chambers MJ, et al. Preferential induction of cross-group influenza A hemagglutinin stem-specific memory B cells after H7N9 immunization in humans. Sci Immunol, 2017; 2.
[32] Marcatili P, Olimpieri PP, Chailyan A, et al. Antibody modeling using the prediction of immunoglobulin structure (PIGS) web server [corrected]. Nat Protoc, 2014; 9, 2771−83. doi:  10.1038/nprot.2014.189
[33] Pierce BG, Wiehe K, Hwang H, et al. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 2014; 30, 1771−3. doi:  10.1093/bioinformatics/btu097
[34] Anderson CS, Ortega S, Chaves FA, et al. Natural and directed antigenic drift of the H1 influenza virus hemagglutinin stalk domain. Sci Rep, 2017; 7, 14614. doi:  10.1038/s41598-017-14931-7
[35] Prachanronarong KL, Canale AS, Liu P, et al. Mutations in influenza A virus neuraminidase and hemagglutinin confer resistance against a broadly neutralizing hemagglutinin stem antibody. J Virol, 2019; 93.
[36] Yamayoshi S, Yasuhara A, Ito M, et al. Differences in the ease with which mutant viruses escape from human monoclonal antibodies against the HA stem of influenza A virus. J Clin Virol, 2018; 108, 105−11. doi:  10.1016/j.jcv.2018.09.016
[37] Ekiert DC, Bhabha G, Elsliger MA, et al. Antibody recognition of a highly conserved influenza virus epitope. Science, 2009; 324, 246−51. doi:  10.1126/science.1171491
[38] Chen YQ, Lan LY, Huang M, et al. Hemagglutinin stalk-reactive antibodies interfere with influenza virus neuraminidase activity by steric hindrance. J Virol, 2019; 93.
[39] Dilillo DJ, Palese P, Wilson PC, et al. Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection. J Clin Invest, 2016; 126, 605−10. doi:  10.1172/JCI84428
[40] Kosik I, Angeletti D, Gibbs JS, et al. Neuraminidase inhibition contributes to influenza A virus neutralization by anti-hemagglutinin stem antibodies. J Exp Med, 2019; 216, 304−16.
[41] Herfst S, Schrauwen EJ, Linster M, et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science, 2012; 336, 1534−41. doi:  10.1126/science.1213362
[42] Mair CM, Ludwig K, Herrmann A, et al. Receptor binding and pH stability - how influenza A virus hemagglutinin affects host-specific virus infection. Biochim Biophys Acta, 2014; 1838, 1153−68. doi:  10.1016/j.bbamem.2013.10.004
[43] Angeletti D, Kosik I, Santos JJS, et al. Outflanking immunodominance to target subdominant broadly neutralizing epitopes. Proc Natl Acad Sci USA, 2019; 116, 13474−9. doi:  10.1073/pnas.1816300116