[1] Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med, 2010; 363, 1938−48. doi:  10.1056/NEJMra1001389
[2] Lyons TG. Targeted Therapies for Triple-Negative Breast Cancer. Curr Treat Options Oncol, 2019; 20, 82.
[3] Kwapisz D. Pembrolizumab and atezolizumab in triple-negative breast cancer. Cancer Immunol Immunother, 2021; 70, 607−17. doi:  10.1007/s00262-020-02736-z
[4] Keenan TE, Tolaney SM. Role of immunotherapy in triple-negative breast cancer. J Natl Compr Canc Netw, 2020; 18, 479−89. doi:  10.6004/jnccn.2020.7554
[5] Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol, 2008; 26, 2568−81. doi:  10.1200/JCO.2007.13.1748
[6] Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC. Cancers, 2020; 12, 916. doi:  10.3390/cancers12040916
[7] Bianchini G, Balko JM, Mayer IA, et al. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol, 2016; 13, 674−90. doi:  10.1038/nrclinonc.2016.66
[8] Savas P, Salgado R, Denkert C, et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol, 2016; 13, 228−41. doi:  10.1038/nrclinonc.2015.215
[9] Ruffell B, Au A, Rugo HS, et al. Leukocyte composition of human breast cancer. Proc Natl Acad Sci USA, 2012; 109, 2796−801. doi:  10.1073/pnas.1104303108
[10] Savas P, Virassamy B, Ye CZ, et al. Publisher correction: single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med, 2018; 24, 1941.
[11] Heeke AL, Tan AR. Checkpoint inhibitor therapy for metastatic triple-negative breast cancer. Cancer Metastasis Rev, 2021; 40, 537−47. doi:  10.1007/s10555-021-09972-4
[12] Gao SH, Liu SZ, Wang GZ, et al. CXCL13 in cancer and other diseases: biological functions, clinical significance, and therapeutic opportunities. Life, 2021; 11, 1282. doi:  10.3390/life11121282
[13] Biswas S, Sengupta S, Roy Chowdhury S, et al. CXCL13-CXCR5 co-expression regulates epithelial to mesenchymal transition of breast cancer cells during lymph node metastasis. Breast Cancer Res Treat, 2014; 143, 265−76. doi:  10.1007/s10549-013-2811-8
[14] Ma JJ, Jiang L, Tong DY, et al. CXCL13 inhibition induce the apoptosis of MDA-MB-231 breast cancer cells through blocking CXCR5/ERK signaling pathway. Eur Rev Med Pharmacol Sci, 2018; 22, 8755−62.
[15] Ma QZ, Chen Y, Qin Q, et al. CXCL13 expression in mouse 4T1 breast cancer microenvironment elicits antitumor immune response by regulating immune cell infiltration. Precis Clin Med, 2021; 4, 155−67. doi:  10.1093/pcmedi/pbab020
[16] Zhang SG, Chen K, Zhao ZG, et al. Lower expression of GBP2 associated with less immune cell infiltration and poor prognosis in skin cutaneous melanoma (SKCM). J Immunother, 2022; 45, 274−83. doi:  10.1097/CJI.0000000000000421
[17] Godoy P, Cadenas C, Hellwig B, et al. Interferon-inducible guanylate binding protein (GBP2) is associated with better prognosis in breast cancer and indicates an efficient T cell response. Breast Cancer, 2014; 21, 491−9. doi:  10.1007/s12282-012-0404-8
[18] Liu S, Chen L, Zeng Y, et al. Suppressed expression of miR-378 targeting gzmb in NK cells is required to control dengue virus infection. Cell Mol Immunol, 2016; 13, 700−8.
[19] Bassez A, Vos H, Van Dyck L, et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med, 2021; 27, 820−32. doi:  10.1038/s41591-021-01323-8
[20] Crake RLI, Strother MR, Phillips E, et al. Influence of serum inflammatory cytokines on cytochrome P450 drug metabolising activity during breast cancer chemotherapy: a patient feasibility study. Sci Rep, 2021; 11, 5648. doi:  10.1038/s41598-021-85048-1
[21] Lee KM, Nam K, Oh S, et al. Extracellular matrix protein 1 regulates cell proliferation and trastuzumab resistance through activation of epidermal growth factor signaling. Breast Cancer Res, 2014; 16, 479. doi:  10.1186/s13058-014-0479-6
[22] Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res, 2010; 16, 2927−31. doi:  10.1158/1078-0432.CCR-09-2329
[23] Ntanasis-Stathopoulos I, Fotiou D, Terpos E. CCL3 signaling in the tumor microenvironment. In: Birbrair A. Tumor Microenvironment. Springer. 2020, 13-21.
[24] Wu J, Li L, Liu JN, et al. CC chemokine receptor 7 promotes triple-negative breast cancer growth and metastasis. Acta Biochim Biophys Sin, 2018; 50, 835−42. doi:  10.1093/abbs/gmy077
[25] Bianchini G, De Angelis C, Licata L, et al. Treatment landscape of triple-negative breast cancer - expanded options, evolving needs. Nat Rev Clin Oncol, 2022; 19, 91−113. doi:  10.1038/s41571-021-00565-2
[26] Deepak KGK, Vempati R, Nagaraju GP, et al. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res, 2020; 153, 104683. doi:  10.1016/j.phrs.2020.104683
[27] Xiao Y, Ma D, Zhao S, et al. Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer. Clin Cancer Res, 2019; 25, 5002−14. doi:  10.1158/1078-0432.CCR-18-3524
[28] Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment. Int J Mol Sci, 2021; 22, 6995. doi:  10.3390/ijms22136995
[29] Ehrmann DA, Weinberg M, Sarne DH. Limitations to the use of a sensitive assay for serum thyrotropin in the assessment of thyroid status. Arch Intern Med, 1989; 149, 369−72. doi:  10.1001/archinte.1989.00390020087018
[30] Blázovics A, Csorba B. Kanpo traditional medicine nowadays is still a supported therapeutic option in Japan: Kanpo preparations. Orv Hetil, 2022; 163, 386−92. (In Hungarian
[31] Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov, 2015; 5, 43−51. doi:  10.1158/2159-8290.CD-14-0863
[32] Majidpoor J, Mortezaee K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin Immunol, 2021; 226, 108707. doi:  10.1016/j.clim.2021.108707
[33] Dai SY, Zeng H, Liu ZP, et al. Intratumoral CXCL13+CD8+T cell infiltration determines poor clinical outcomes and immunoevasive contexture in patients with clear cell renal cell carcinoma. J Immunother Cancer, 2021; 9, e001823. doi:  10.1136/jitc-2020-001823
[34] Jin KF, Cao YF, Gu Y, et al. Poor clinical outcomes and immunoevasive contexture in CXCL13+CD8+ T cells enriched gastric cancer patients. Oncoimmunology, 2021; 10, 1915560. doi:  10.1080/2162402X.2021.1915560