[1] |
Mokra K. Endocrine disruptor potential of short- and long-chain perfluoroalkyl substances (PFASs)-a synthesis of current knowledge with proposal of molecular mechanism. Int J Mol Sci, 2021; 22, 2148. doi: 10.3390/ijms22042148 |
[2] |
Abdellatif AG, Préat V, Vamecq J, et al. Peroxisome proliferation and modulation of rat liver carcinogenesis by 2, 4-dichlorophenoxyacetic acid, 2, 4, 5-trichlorophenoxyacetic acid, perfluorooctanoic acid and nafenopin. Carcinogenesis, 1990; 11, 1899−902. doi: 10.1093/carcin/11.11.1899 |
[3] |
Jensen AA, Leffers H. Emerging endocrine disrupters: perfluoroalkylated substances. Int J Androl, 2008; 31, 161−9. doi: 10.1111/j.1365-2605.2008.00870.x |
[4] |
Johnson JD, Gibson SJ, Ober RE. Cholestyramine-enhanced fecal elimination of carbon-14 in rats after administration of ammonium [14C]perfluorooctanoate or potassium [14C]perfluorooctanesulfonate. Fundam Appl Toxicol, 1984; 4, 972−6. doi: 10.1016/0272-0590(84)90235-5 |
[5] |
Giesy JP, Kannan K. Peer Reviewed: Perfluorochemical surfactants in the environment. Environ Sci Technol, 2002; 36, 146A−52A. doi: 10.1021/es022253t |
[6] |
Olsen GW, Mair DC, Church TR, et al. Decline in perfluorooctanesulfonate and other polyfluoroalkyl chemicals in American Red Cross adult blood donors, 2000-2006. Environ Sci Technol, 2008; 42, 4989−95. doi: 10.1021/es800071x |
[7] |
Zhang YF, Beesoon S, Zhu LY, et al. Isomers of perfluorooctanesulfonate and perfluorooctanoate and total perfluoroalkyl acids in human serum from two cities in North China. Environ Int, 2013; 53, 9−17. doi: 10.1016/j.envint.2012.12.007 |
[8] |
Olsen GW, Burris JM, Ehresman DJ, et al. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect, 2007; 115, 1298−305. doi: 10.1289/ehp.10009 |
[9] |
U. S. EPA. Draft risk assessment of the potential human health effects associated with exposure to perfluorooctanoic acid and its salts. Washington: U. S. Environmental Protection Agency, 2005. |
[10] |
Chengelis CP, Kirkpatrick JB, Myers NR, et al. Comparison of the toxicokinetic behavior of perfluorohexanoic acid (PFHxA) and nonafluorobutane-1-sulfonic acid (PFBS) in cynomolgus monkeys and rats. Reprod Toxicol, 2009; 27, 400−6. doi: 10.1016/j.reprotox.2009.01.013 |
[11] |
Stein CR, Savitz DA, Dougan M. Serum levels of perfluorooctanoic acid and perfluorooctane sulfonate and pregnancy outcome. Am J Epidemiol, 2009; 170, 837−46. doi: 10.1093/aje/kwp212 |
[12] |
Betts K. PFOS and PFOA in humans: new study links prenatal exposure to lower birth weight. Environ Health Perspect, 2007; 115, A550. |
[13] |
Apelberg BJ, Witter FR, Herbstman JB, et al. Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect, 2007; 115, 1670−6. doi: 10.1289/ehp.10334 |
[14] |
Fei CY, McLaughlin JK, Tarone RE, et al. Perfluorinated chemicals and fetal growth: a study within the Danish National Birth Cohort. Environ Health Perspect, 2007; 115, 1677−82. doi: 10.1289/ehp.10506 |
[15] |
Simard J, Ricketts ML, Gingras S, et al. Molecular biology of the 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase gene family. Endocr Rev, 2005; 26, 525−82. doi: 10.1210/er.2002-0050 |
[16] |
Wang SW, Zhang BR, Zhai YN, et al. Structure-activity relationship analysis of perfluoroalkyl carbonic acids on human and rat placental 3β-hydroxysteroid dehydrogenase activity. Toxicology, 2022; 480, 153334. doi: 10.1016/j.tox.2022.153334 |
[17] |
Jiang B, Kamat A, Mendelson CR. Hypoxia prevents induction of aromatase expression in human trophoblast cells in culture: potential inhibitory role of the hypoxia-inducible transcription factor Mash-2 (mammalian achaete-scute homologue ous protein-2). Mol Endocrinol, 2000; 14, 1661−73. doi: 10.1210/mend.14.10.0539 |
[18] |
Rainey WE, Rehman KS, Carr BR. The human fetal adrenal: making adrenal androgens for placental estrogens. Semin Reprod Med, 2004; 22, 327−36. doi: 10.1055/s-2004-861549 |
[19] |
Samson M, Labrie F, Luu-The V. Specific estradiol biosynthetic pathway in choriocarcinoma (JEG-3) cell line. J Steroid Biochem Mol Biol, 2009; 116, 154−9. doi: 10.1016/j.jsbmb.2009.05.009 |
[20] |
Albrecht ED, Pepe GJ. Estrogen regulation of placental angiogenesis and fetal ovarian development during primate pregnancy. Int J Dev Biol, 2010; 54, 397−408. doi: 10.1387/ijdb.082758ea |
[21] |
Xu RA, Mao BP, Li SL, et al. Structure-activity relationships of phthalates in inhibition of human placental 3β-hydroxysteroid dehydrogenase 1 and aromatase. Reprod Toxicol, 2016; 61, 151−61. doi: 10.1016/j.reprotox.2016.04.004 |
[22] |
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature, 2021; 596, 583−9. doi: 10.1038/s41586-021-03819-2 |
[23] |
Varadi M, Anyango S, Deshpande M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res, 2022; 50, D439−44. doi: 10.1093/nar/gkab1061 |
[24] |
Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res, 2011; 39, W270−7. doi: 10.1093/nar/gkr366 |
[25] |
Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel, 1995; 8, 127−34. doi: 10.1093/protein/8.2.127 |
[26] |
Thomas JL, Mason JI, Brandt S, et al. Structure/function relationships responsible for the kinetic differences between human type 1 and type 2 3β-hydroxysteroid dehydrogenase and for the catalysis of the type 1 activity. J Biol Chem, 2002; 277, 42795−801. doi: 10.1074/jbc.M208537200 |
[27] |
Thomas JL, Duax WL, Addlagatta A, et al. Serine 124 completes the Tyr, Lys and Ser triad responsible for the catalysis of human type 1 3β-hydroxysteroid dehydrogenase. J Mol Endocrinol, 2004; 33, 253−61. doi: 10.1677/jme.0.0330253 |
[28] |
Hekster FM, De Voogt P, Pijnenburg AMCM, et al. Perfluoroalkylated substances: aquatic environmental assessment. Assen: Rijkswaterstaat, 2002: 99. |
[29] |
Zhao BH, Hu GX, Chu YH, et al. Inhibition of human and rat 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase 3 activities by perfluoroalkylated substances. Chem Biol Interact, 2010; 188, 38−43. doi: 10.1016/j.cbi.2010.07.001 |
[30] |
Doi M, Takahashi Y, Komatsu R, et al. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med, 2010; 16, 67−74. doi: 10.1038/nm.2061 |
[31] |
Zhao BH, Lian QQ, Chu YH, et al. The inhibition of human and rat 11β-hydroxysteroid dehydrogenase 2 by perfluoroalkylated substances. J Steroid Biochem Mol Biol, 2011; 125, 143−7. doi: 10.1016/j.jsbmb.2010.12.017 |
[32] |
Ye LP, Zhao BH, Cai XH, et al. The inhibitory effects of perfluoroalkyl substances on human and rat 11β-hydroxysteroid dehydrogenase. Chem Biol Interact, 2012; 195, 114−8. doi: 10.1016/j.cbi.2011.11.007 |