[1] Villa-Bellosta R, Sorribas V. Arsenate transport by sodium/phosphate cotransporter type Ⅱb. Toxicol Appl Pharmacol, 2010; 247, 36-40. doi:  10.1016/j.taap.2010.05.012
[2] Xia Y, Wade TJ, Wu K, et al. Well water arsenic exposure, arsenic induced skin-lesions and self-reported morbidity in Inner Mongolia. Int J Environ Res Public Health, 2009; 6, 1107-23. doi:  10.3390/ijerph6031107
[3] Balakumar P, Kaur J. Arsenic exposure and cardiovascular disorders:an overview. Cardiovasc Toxicol, 2009; 9, 169-76. doi:  10.1007/s12012-009-9050-6
[4] Tseng CH. Cardiovascular disease in arsenic-exposed subjects living in the arseniasis-hyperendemic areas in Taiwan. Atherosclerosis, 2008; 199, 12-8. doi:  10.1016/j.atherosclerosis.2008.02.013
[5] Jin X, Tian X, Liu Z, et al. Maternal exposure to arsenic and cadmium and the risk of congenital heart defects in offspring. Reprod Toxicol, 2016; 59, 109-16. doi:  10.1016/j.reprotox.2015.12.007
[6] Quansah R, Armah FA, Essumang DK, et al. Association of arsenic with adverse pregnancy outcomes/infant mortality:a systematic review and meta-analysis. Environ Health Perspect, 2015; 123, 412-21. http://www.julkari.fi/handle/10024/126657
[7] Aung KH, Kyi-Tha-Thu C, Sano K, et al. Prenatal Exposure to Arsenic Impairs Behavioral Flexibility and Cortical Structure in Mice. Front Neurosci, 2016; 10, 137. https://www.researchgate.net/publication/299554198_Prenatal...
[8] Kim YJ, Kim JM. Arsenic Toxicity in Male Reproduction and Development. Dev. Reprod, 2015; 19, 167-80. doi:  10.12717/DR.2015.19.4.167
[9] Rosen BP. Biochemistry of arsenic detoxification. FEBS Lett, 2002; 529, 86-92. doi:  10.1016/S0014-5793(02)03186-1
[10] Werner A, Dehmelt L, Nalbant P. Na+-dependent phosphate cotransporters:the NaPi protein families. J Exp Biol, 1998; 201, 3135-42. https://www.researchgate.net/profile/Jurg_Biber/citations?page=11&...
[11] Virkki LV, Biber J, Murer H, et al. Phosphate transporters:a tale of two solute carrier families. Am J Physiol Renal Physiol, 2007; 293, F643-54. doi:  10.1152/ajprenal.00228.2007
[12] Villa-Bellosta R, Sorribas V. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Toxicol Appl Pharmacol, 2008; 232, 125-34. doi:  10.1016/j.taap.2008.05.026
[13] Reimer RJ, Edwards RH. Organic anion transport is the primary function of the SLC17/type Ⅰ phosphate transporter family. Pflugers Arch, 2004; 447, 629-35. doi:  10.1007/s00424-003-1087-y
[14] Collins JF, Bai L, Ghishan FK. The SLC20 family of proteins:dual functions as sodium-phosphate cotransporters and viral receptors. Pflugers Arch, 2004; 447, 647-52. doi:  10.1007/s00424-003-1088-x
[15] Forster IC, Hernando N, Biber J, et al. Phosphate transporters of the SLC20 and SLC34 families. Mol Aspects Med, 2013; 34, 386-95. doi:  10.1016/j.mam.2012.07.007
[16] Villa-Bellosta R, Bogaert YE, Levi M, et al. Characterization of phosphate transport in rat vascular smooth muscle cells:implications for vascular calcification. Arterioscler Thromb Vasc Biol, 2007; 27, 1030-6. doi:  10.1161/ATVBAHA.106.132266
[17] Busch AE, Wagner CA, Schuster A, et al. Properties of electrogenic Pi transport by a human renal brush border Na+/Pi transporter. J Am Soc Nephrol, 1995; 6, 1547-51. https://www.researchgate.net/publication/14452262_Properties_of...
[18] Ravera S, Virkki LV, Murer H, et al. Deciphering PiT transport kinetics and substrate specificity using electrophysiology and fluxmeasurements. Am J Physiol Cell Physiol, 2007; 293, C606-20. doi:  10.1152/ajpcell.00064.2007
[19] Villa-Bellosta R, Sorribas V. Compensatory regulation of the sodium/phosphate cotransporters NaPi-Ⅱc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Pflugers Archiv, 2010; 459, 499-508. doi:  10.1007/s00424-009-0746-z
[20] Ravera S, Murer H, Forster IC. An externally accessible linker region in the sodium-coupled phosphate transporter PiT-1 (SLC20A1) is important for transport function. Cell Physiol Biochem, 2013; 32, 187-99. doi:  10.1159/000350135
[21] Atkinson MA, Eisenbarth GS. Type 1 diabetes:New perspectives on disease pathogenesis and treatment. Lancet, 2001; 358, 221-9. doi:  10.1016/S0140-6736(01)05415-0
[22] Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature, 2010; 464, 1293-300. doi:  10.1038/nature08933
[23] Atkinson MA. The Pathogenesis and Natural History of Type 1 Diabetes. Cold Spring Harb Perspect Med, 2012; 2, a007641. https://www.researchgate.net/publication/232813762_The...
[24] van Lunteren E, Moyer M, Spiegler S. Alterations in lung gene expression in streptozotocin-induced diabetic rats. BMC Endocr Disord, 2014; 14, 5. doi:  10.1186/1472-6823-14-5
[25] Sadi G, Baloglu MC, Pektas MB. Differential gene expression in liver tissues of streptozotocin-induced diabetic rats in response to resveratrol treatment. PloS one, 2015; 10, e0124968. doi:  10.1371/journal.pone.0124968
[26] van Lunteren E, Moyer M. Gene expression profiling in the type 1 diabetes rat diaphragm. PloS One, 2009; 4, e7832. doi:  10.1371/journal.pone.0007832
[27] Jin T, Nordberg G, Sehlin J, et al. The susceptibility to nephrotoxicity of streptozotocin-induced diabetic rats subchronically exposed to cadmium chloride in drinking water. Toxicology, 1999; 142, 69-75. doi:  10.1016/S0300-483X(99)00135-3
[28] Wu KK, Huan Y. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr Protoc Pharmacol, 2008; doi: 10.1002/0471141755.ph0547s40.
[29] Fu J, Woods CG, Yehuda-Shnaidman E, et al. Low-level arsenic impairs glucose-stimulated insulin secretion in pancreatic beta cells:involvement of cellular adaptive response to oxidative stress. Environ Health Perspect, 2010; 118, 864-70. doi:  10.1289/ehp.0901608
[30] Li H, Ren P, Onwochei M, et al. Regulation of rat Na+/Pi cotransporter-1 gene expression:the roles of glucose and insulin. Am J Physiol, 1996; 271, E1021-8. http://ajpendo.physiology.org/content/271/6/E1021.abstract
[31] Wang CC, Sorribas V, Sharma G, et al. Insulin attenuates vascular smooth muscle calcification but increases vascular smooth musclecell phosphate transport. Atherosclerosis, 2007; 195, e65-75. doi:  10.1016/j.atherosclerosis.2007.02.032
[32] Eisler R. Arsenic hazards to humans, plants, and animals from gold mining. Rev Environ Contam Toxicol, 2004; 180, 133-65. https://www.researchgate.net/publication/9049510_Arsenic_Hazards...
[33] Hughes MF, Menache M, Thompson DJ. Dose-dependent disposition of sodium arsenate in mice following acute oral exposure. Fundam Appl Toxicol, 1994; 22, 80-9. doi:  10.1006/faat.1994.1011
[34] Kolachi NF, Kazi TG, Afridi HI, et al. Status of toxic metals in biological samples of diabetic mothers and their neonates. Biol Trace Elem Res, 2011; 143, 196-212. doi:  10.1007/s12011-010-8879-7
[35] Yin J, Liu S, Yu J, et al. Differential toxicity of arsenic on renal oxidative damage and urinary metabolic profiles in normal and diabetic mice. Environ Sci Pollut Res, 2017. doi: 10.1007/s11356-017-9391-9.