[1] Vicedo-Cabrera AM, Tobias A, Jaakkola JJK, et al. Global mortality burden attributable to non-optimal temperatures. Lancet, 2022; 399, 1113.
[2] Zafeiratou S, Stafoggia M, Gasparrini A, et al. Independent effects of long and short-term exposures to non-optimal increased temperature on mortality. Environ Pollut, 2025; 366, 125428. doi:  10.1016/j.envpol.2024.125428
[3] Bellprat O, Guemas V, Doblas-Reyes F, et al. Towards reliable extreme weather and climate event attribution. Nat Commun, 2019; 10, 1732. doi:  10.1038/s41467-019-09729-2
[4] Gong YX, Chai J, Yang M, et al. Effects of ambient temperature on the risk of preterm birth in offspring of adolescent mothers in rural Henan, China. Environ Res, 2021; 201, 111545. doi:  10.1016/j.envres.2021.111545
[5] Watts N, Amann M, Arnell N, et al. The 2019 report of the lancet countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet, 2019; 394, 1836−78. doi:  10.1016/S0140-6736(19)32596-6
[6] Lei J, Chen RJ, Yin P, et al. Association between cold spells and mortality risk and burden: a nationwide study in China. Environ Health Perspect, 2022; 130, 027006. doi:  10.1289/EHP9284
[7] Gariazzo C, Taiano L, Bonafede M, et al. Association between extreme temperature exposure and occupational injuries among construction workers in Italy: an analysis of risk factors. Environ Int, 2023; 171, 107677. doi:  10.1016/j.envint.2022.107677
[8] Murray CJL, Aravkin AY, Zheng P, et al. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the global burden of disease study 2019. Lancet, 2020; 396, 1223−49. doi:  10.1016/S0140-6736(20)30752-2
[9] Zhao Q, Guo YM, Ye TT, et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet Health, 2021; 5, e415−25. doi:  10.1016/S2542-5196(21)00081-4
[10] Chen RJ, Yin P, Wang LJ, et al. Association between ambient temperature and mortality risk and burden: time series study in 272 main Chinese cities. BMJ, 2018; 363, k4306.
[11] Feng J, Cao DW, Zheng DS, et al. Cold spells linked with respiratory disease hospitalization, length of hospital stay, and hospital expenses: exploring cumulative and harvesting effects. Sci Total Environ, 2023; 863, 160726. doi:  10.1016/j.scitotenv.2022.160726
[12] Gao JJ, Yu F, Xu ZH, et al. The association between cold spells and admissions of ischemic stroke in Hefei, China: modified by gender and age. Sci Total Environ, 2019; 669, 140−7. doi:  10.1016/j.scitotenv.2019.02.452
[13] Du JP, Cui LL, Ma YW, et al. Extreme cold weather and circulatory diseases of older adults: a time-stratified case-crossover study in Jinan, China. Environ Res, 2022; 214, 114073. doi:  10.1016/j.envres.2022.114073
[14] Cai WJ, Zhang C, Zhang SH, et al. The 2024 China report of the lancet countdown on health and climate change: launching a new low-carbon, healthy journey. Lancet Public Health, 2024; 9, e1070−88. doi:  10.1016/S2468-2667(24)00241-X
[15] Sun QH, Sun ZY, Chen C, et al. Health risks and economic losses from cold spells in China. Sci Total Environ, 2022; 821, 153478. doi:  10.1016/j.scitotenv.2022.153478
[16] Wu Y, Xu RB, Yu WH, et al. Economic burden of premature deaths attributable to non-optimum temperatures in Italy: a nationwide time-series analysis from 2015 to 2019. Environ Res, 2022; 212, 113313. doi:  10.1016/j.envres.2022.113313
[17] Kim KN, Lim YH, Bae S, et al. Associations between cold spells and hospital admission and mortality due to diabetes: a nationwide multi-region time-series study in Korea. Sci Total Environ, 2022; 838, 156464. doi:  10.1016/j.scitotenv.2022.156464
[18] Guo YM, Gasparrini A, Armstrong BG, et al. Heat wave and mortality: a multicountry, multicommunity study. Environ Health Perspect, 2017; 125, 087006. doi:  10.1289/EHP1026
[19] Lee W, Choi HM, Lee JY, et al. Temporal changes in mortality impacts of heat wave and cold spell in Korea and Japan. Environ Int, 2018; 116, 136−46. doi:  10.1016/j.envint.2018.04.017
[20] Zhao C, Li YH, Tong SL, et al. Economic burden of premature deaths attributable to different heatwaves in China: a multi-site study, 2014-2019. Adv Climate Change Res, 2023; 14, 836−46. doi:  10.1016/j.accre.2023.11.003
[21] Franchini M, Mannucci PM, Harari S, et al. The health and economic burden of air pollution. Am J Med, 2015; 128, 931−2. doi:  10.1016/j.amjmed.2015.03.021
[22] OECD (Organization for Economic Co-operation and Development). The economic consequences of outdoor air pollution. OECD; 2016.
[23] Li L, Lei YL, Pan DY, et al. Economic evaluation of the air pollution effect on public health in China’s 74 cities. SpringerPlus, 2016; 5, 402. doi:  10.1186/s40064-016-2024-9
[24] Barnsley PD, Peden AE, Scarr J. Calculating the economic burden of fatal drowning in Australia. J Saf Res, 2018; 67, 57−63. doi:  10.1016/j.jsr.2018.09.002
[25] Hammitt JK, Morfeld P, Tuomisto JT, et al. Premature deaths, statistical lives, and years of life lost: identification, quantification, and valuation of mortality risks. Risk Anal, 2020; 40, 674−95. doi:  10.1111/risa.13427
[26] Niu Y, Chen RJ, Kan HD. Air pollution, disease burden, and health economic loss in China. In: Dong GH. Ambient Air Pollution and Health Impact in China. Springer. 2017, 233-42.
[27] Jin YN, Andersson H, Zhang SQ. Do preferences to reduce health risks related to air pollution depend on illness type? Evidence from a choice experiment in Beijing, China. J Environ Econ Manage, 2020; 103, 102355. doi:  10.1016/j.jeem.2020.102355
[28] Yan ML, Xie Y, Zhu HH, et al. The exceptional heatwaves of 2017 and all-cause mortality: an assessment of nationwide health and economic impacts in China. Sci Total Environ, 2022; 812, 152371. doi:  10.1016/j.scitotenv.2021.152371
[29] Viscusi WK, Aldy JE. The Value of a Statistical Life: A Critical Review of Market Estimates Throughout the World. J Risk Uncertain. 2003;27(1): 5-76.
[30] Huang YS, Song HJ, Cheng YB, et al. Heatwave and urinary hospital admissions in China: disease burden and associated economic loss, 2014 to 2019. Sci Total Environ, 2023; 857, 159565. doi:  10.1016/j.scitotenv.2022.159565
[31] Wang Y, Liu Y, Ye DX, et al. High temperatures and emergency department visits in 18 sites with different climatic characteristics in China: risk assessment and attributable fraction identification. Environ Int, 2020; 136, 105486. doi:  10.1016/j.envint.2020.105486
[32] Li YH, Cheng YB, Cui GQ, et al. Association between high temperature and mortality in metropolitan areas of four cities in various climatic zones in China: a time-series study. Environ Health, 2014; 13, 65. doi:  10.1186/1476-069X-13-65
[33] Gasparrini A, Armstrong B. Reducing and meta-analysing estimates from distributed lag non-linear models. BMC Med Res Methodol, 2013; 13, 1. doi:  10.1186/1471-2288-13-1
[34] Gasparrini A, Leone M. Attributable risk from distributed lag models. BMC Med Res Methodol, 2014; 14, 55. doi:  10.1186/1471-2288-14-55
[35] Ryti NRI, Guo YM, Jaakkola JJK. Global association of cold spells and adverse health effects: a systematic review and meta-analysis. Environ Health Perspect, 2016; 124, 12−22. doi:  10.1289/ehp.1408104
[36] Cheng Q, Wang X, Wei QN, et al. The short-term effects of cold spells on pediatric outpatient admission for allergic rhinitis in Hefei, China. Sci Total Environ, 2019; 664, 374−80. doi:  10.1016/j.scitotenv.2019.01.237
[37] Fan JF, Xiao YC, Feng YF, et al. A systematic review and meta-analysis of cold exposure and cardiovascular disease outcomes. Front Cardiovasc Med, 2023; 10, 1084611. doi:  10.3389/fcvm.2023.1084611
[38] Gasparrini A, Guo YM, Hashizume M, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet, 2015; 386, 369−75. doi:  10.1016/S0140-6736(14)62114-0
[39] Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev, 2008; 88, 1009−86. doi:  10.1152/physrev.00045.2006
[40] Manou-Stathopoulou V, Goodwin CD, Patterson T, et al. The effects of cold and exercise on the cardiovascular system. Heart, 2015; 101, 808−20. doi:  10.1136/heartjnl-2014-306276
[41] Phung D, Thai PK, Guo YM, et al. Ambient temperature and risk of cardiovascular hospitalization: an updated systematic review and meta-analysis. Sci Total Environ, 2016; 550, 1084−102. doi:  10.1016/j.scitotenv.2016.01.154
[42] Li H, Li M, Zhang SY, et al. Interactive effects of cold spell and air pollution on outpatient visits for anxiety in three subtropical Chinese cities. Sci Total Environ, 2022; 817, 152789. doi:  10.1016/j.scitotenv.2021.152789
[43] Ma CC, Yang J, Nakayama SF, et al. Cold spells and cause-specific mortality in 47 Japanese prefectures: a systematic evaluation. Environ Health Perspect, 129, 67001.
[44] Yang J, Yin P, Sun JM, et al. Heatwave and mortality in 31 major Chinese cities: definition, vulnerability and implications. Sci Total Environ, 2019; 649, 695−702. doi:  10.1016/j.scitotenv.2018.08.332
[45] D’Ippoliti D, Michelozzi P, Marino C, et al. The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environ Health, 2010; 9, 37. doi:  10.1186/1476-069X-9-37
[46] Meng CZ, Ke F, Xiao Y, et al. Effect of cold spells and their different definitions on mortality in Shenzhen, China. Front Public Health, 2022; 9, 817079. doi:  10.3389/fpubh.2021.817079
[47] Wang YX, Lin L, Xu ZH, et al. Have residents adapted to heat wave and cold spell in the 21st century? Evidence from 136 Chinese cities. Environ Int, 2023; 173, 107811. doi:  10.1016/j.envint.2023.107811
[48] Yang J, Yin P, Zhou MG, et al. Cardiovascular mortality risk attributable to ambient temperature in China. Heart, 2015; 101, 1966−72. doi:  10.1136/heartjnl-2015-308062