[1] |
Perera FP, Tang DL, Wang S, et al. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6-7 years. Environ Health Perspect, 2012; 120, 921−6. doi: 10.1289/ehp.1104315 |
[2] |
Edwards SC, Jedrychowski W, Butscher M, et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Environ Health Perspect, 2010; 118, 1326−31. doi: 10.1289/ehp.0901070 |
[3] |
Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med, 2006; 3, e442. doi: 10.1371/journal.pmed.0030442 |
[4] |
Jedrychowski WA, Perera FP, Camann D, et al. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environ Sci Pollut Res Int, 2015; 22, 3631−9. doi: 10.1007/s11356-014-3627-8 |
[5] |
Rice D, Barone Jr S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect, 2000; 108 Suppl 3, 511-33. |
[6] |
Wang BL, Pang ST, Zhang XL, et al. Levels and neurodevelopmental effects of polycyclic aromatic hydrocarbons in settled house dust of urban dwellings on preschool–aged children in Nanjing, China. Atmos Pollut Res, 2014; 5, 292−302. doi: 10.5094/APR.2014.035 |
[7] |
Zhang Y, Yang Y, Zhang Q, et al. Effect of benzo[a]pyrene-DNA adduct in cord blood on the neurodevelopment of 12-month-old infants in Qingdao city. Neuropsychiatr Dis Treat, 2019; 15, 3351−7. doi: 10.2147/NDT.S219244 |
[8] |
Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature, 2012; 486, 222−7. doi: 10.1038/nature11053 |
[9] |
Shariatifar N, Sharifiarab G, Kargarghomsheh P, et al. Polycyclic aromatic hydrocarbons (PAHs) in potato and related products in Tehran: a health risk assessment study. Inter J Environ Anal Chem, 2022; 1−14. doi: 10.1080/03067319.2022.2100258 |
[10] |
Gevao B, Al-Bahloul M, Zafar J, et al. Polycyclic aromatic hydrocarbons in indoor air and dust in Kuwait: implications for sources and nondietary human exposure. Arch Environ Contam Toxicol, 2007; 53, 503-12. |
[11] |
Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt J Petrol, 2016; 25, 107−123. doi: 10.1016/j.ejpe.2015.03.011 |
[12] |
Zhang LM, Nichols RG, Correll J, et al. Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation. Environ Health Perspect, 2015; 123, 679−88. doi: 10.1289/ehp.1409055 |
[13] |
Zhang W, Sun ZQ, Zhang Q, et al. Preliminary evidence for an influence of exposure to polycyclic aromatic hydrocarbons on the composition of the gut microbiota and neurodevelopment in three-year-old healthy children. BMC Pediatr, 2021; 21, 86. doi: 10.1186/s12887-021-02539-w |
[14] |
Defois C, Ratel J, Denis S, et al. Environmental pollutant benzo[a]pyrene impacts the volatile metabolome and transcriptome of the human gut microbiota. Front Microbiol, 2017; 8, 1562. doi: 10.3389/fmicb.2017.01562 |
[15] |
Guo Y, Senthilkumar K, Alomirah H, et al. Concentrations and profiles of urinary polycyclic aromatic hydrocarbon metabolites (OH-PAHs) in several asian countries. Environ Sci Technol, 2013; 47, 2932−8. doi: 10.1021/es3052262 |
[16] |
Holmes E, Loo RL, Stamler J, et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature, 2008; 453, 396−400. doi: 10.1038/nature06882 |
[17] |
Ellis JK, Athersuch T, Thomas L, et al. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population. BMC Med, 2012; 10, 61. doi: 10.1186/1741-7015-10-61 |
[18] |
Lin D, Sun ZT, Liu Y, et al. Influence of postnatal polycyclic aromatic hydrocarbon exposure on the neurodevelopment of toddlers at the age of 12 months. Neurotoxicology, 2021; 82, 45−9. doi: 10.1016/j.neuro.2020.10.013 |
[19] |
Achenbach T. Manual for the child behavior checklist/2-3 and 1992 profile. University of Vermont, 1992. |
[20] |
Song J, Zhu Y. Children’s neuropsychological tests. 2nd ed. Shanghai Scientific and Technological Publishing Company. |
[21] |
González-Riano C, Dudzik D, Garcia A, et al. Recent developments along the analytical process for metabolomics workflows. Anal Chem, 2020; 92, 203−26. doi: 10.1021/acs.analchem.9b04553 |
[22] |
Castaño-Vinyals G, D'Errico A, Malats N, et al. Biomarkers of exposure to polycyclic aromatic hydrocarbons from environmental air pollution. Occup Environ Med, 2004; 61, e12. doi: 10.1136/oem.2003.008375 |
[23] |
Tanaka M, Okuda T, Itoh K, et al. Polycyclic aromatic hydrocarbons in urban particle matter exacerbate movement disorder after ischemic stroke via potentiation of neuroinflammation. Part Fibre Toxicol, 2023; 20, 6. doi: 10.1186/s12989-023-00517-x |
[24] |
Zhou Y, Mu G, Liu YW, et al. Urinary polycyclic aromatic hydrocarbon metabolites, Club cell secretory protein and lung function. Environ Int, 2018; 111, 109−16. doi: 10.1016/j.envint.2017.11.016 |
[25] |
Li WZ, Chen DJ, Peng Y, et al. Association of polycyclic aromatic hydrocarbons with systemic inflammation and metabolic syndrome and its components. Obesity (Silver Spring), 2023; 31, 1392−401. doi: 10.1002/oby.23691 |
[26] |
Zhou S, Li XT, Dai YY, et al. Association between polycyclic aromatic hydrocarbon exposure and blood lipid levels: the indirect effects of inflammation and oxidative stress. Environ Sci Pollut Res Int, 2023; 30, 123148−63. doi: 10.1007/s11356-023-31020-7 |
[27] |
Farzan SF, Chen Y, Trachtman H, et al. Urinary polycyclic aromatic hydrocarbons and measures of oxidative stress, inflammation and renal function in adolescents: NHANES 2003-2008. Environ Res, 2016; 144, 149−57. doi: 10.1016/j.envres.2015.11.012 |
[28] |
Ribière C, Peyret P, Parisot N, et al. Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model. Sci Rep, 2016; 6, 31027. doi: 10.1038/srep31027 |
[29] |
Bonvallot N, David A, Chalmel F, et al. Metabolomics as a powerful tool to decipher the biological effects of environmental contaminants in humans. Curr Opin Toxicol, 2018; 8, 48−56. doi: 10.1016/j.cotox.2017.12.007 |
[30] |
Wang ZH, Zheng YJ, Zhao BX, et al. Human metabolic responses to chronic environmental polycyclic aromatic hydrocarbon exposure by a metabolomic approach. J Proteome Res, 2015; 14, 2583−93. doi: 10.1021/acs.jproteome.5b00134 |
[31] |
Ye GZ, Gao H, Wu ZM, et al. Comprehensive metabolomics insights into benzo[a]pyrene-induced metabolic reprogramming related to H460 cell invasion and migration. Sci Total Environ, 2021; 774, 145763. doi: 10.1016/j.scitotenv.2021.145763 |
[32] |
Parsons CL, Shaw T, Berecz Z, et al. Role of urinary cations in the aetiology of bladder symptoms and interstitial cystitis. BJU Int, 2014; 114, 286−93. doi: 10.1111/bju.12603 |
[33] |
Darisipudi MN, Thomasova D, Mulay SR, et al. Uromodulin triggers IL-1β-dependent innate immunity via the NLRP3 inflammasome. J Am Soc Nephrol, 2012; 23, 1783−9. doi: 10.1681/ASN.2012040338 |
[34] |
Laguna TA, Reilly CS, Williams CB, et al. Metabolomics analysis identifies novel plasma biomarkers of cystic fibrosis pulmonary exacerbation. Pediatr Pulmonol, 2015; 50, 869−77. doi: 10.1002/ppul.23225 |
[35] |
Duan JJ, Zhang QF, Hu XH, et al. N4-acetylcytidine is required for sustained NLRP3 inflammasome activation via HMGB1 pathway in microglia. Cell Signal, 2019; 58, 44−52. doi: 10.1016/j.cellsig.2019.03.007 |
[36] |
Seymour CW, Yende S, Scott MJ, et al. Metabolomics in pneumonia and sepsis: an analysis of the GenIMS cohort study. Intensive Care Med, 2013; 39, 1423−34. doi: 10.1007/s00134-013-2935-7 |
[37] |
Karijolich J, Yi CQ, Yu YT. Transcriptome-wide dynamics of RNA pseudouridylation. Nat Rev Mol Cell Biol, 2015; 16, 581−5. doi: 10.1038/nrm4040 |
[38] |
Shahmihammadi M, Javadi M, Nassiri-Asl M. An overview on the effects of sodium benzoate as a preservative in food products. Biotechnol Health Sci, 2016; 3, e35084. |
[39] |
Nicholson JK, Wilson ID. Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov, 2003; 2, 668−76. doi: 10.1038/nrd1157 |
[40] |
Williams HRT, Cox IJ, Walker DG, et al. Differences in gut microbial metabolism are responsible for reduced hippurate synthesis in Crohn’s disease. BMC Gastroenterol, 2010; 10, 108. doi: 10.1186/1471-230X-10-108 |
[41] |
Ward LA, Johnson KA, Robinson IM, et al. Isolation from swine feces of a bacterium which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol). Appl Environ Microbiol, 1987; 53, 189−92. doi: 10.1128/aem.53.1.189-192.1987 |
[42] |
Clayton TA. Metabolic differences underlying two distinct rat urinary phenotypes, a suggested role for gut microbial metabolism of phenylalanine and a possible connection to autism. FEBS Lett, 2012; 586, 956−61. doi: 10.1016/j.febslet.2012.01.049 |
[43] |
Guo L, Wei MJ, Li B, et al. The role of cyclooxygenases-2 in Benzo(a)pyrene-induced neurotoxicity of cortical neurons. Chem Res Toxicol, 2020; 33, 1364−73. doi: 10.1021/acs.chemrestox.9b00451 |
[44] |
Chepelev NL, Long AS, Bowers WJ, et al. Transcriptional profiling of the mouse hippocampus supports an NMDAR-mediated neurotoxic mode of action for benzo[a]pyrene. Environ Mol Mutagen, 2016; 57, 350−63. doi: 10.1002/em.22020 |
[45] |
Maqsood R, Stone TW. The gut-brain axis, BDNF, NMDA and CNS disorders. Neurochem Res, 2016; 41, 2819−35. doi: 10.1007/s11064-016-2039-1 |
[46] |
Ling SY, Liang HJ, Chung MH, et al. NMR- and MS-based metabolomics: various organ responses following naphthalene intervention. Mol Biosyst, 2014; 10, 1918−31. doi: 10.1039/c4mb00090k |
[47] |
He FL, Liu RT. Mechanistic insights into phenanthrene-triggered oxidative stress-associated neurotoxicity, genotoxicity, and behavioral disturbances toward the brandling worm (Eisenia fetida) brain: the need for an ecotoxicological evaluation. J Hazard Mater, 2023; 450, 131072. doi: 10.1016/j.jhazmat.2023.131072 |
[48] |
Niu Q, Zhang HM, Li X, et al. Benzo[a]pyrene-induced neurobehavioral function and neurotransmitter alterations in coke oven workers. Occup Environ Med, 2010; 67, 444−8. doi: 10.1136/oem.2009.047969 |
[49] |
Stanaszek PM, Snell JF, O'Neill JJ. Isolation, extraction, and measurement of acetylcholine from Lactobacillus plantarum. Appl Environ Microbiol, 1977; 34, 237−9. doi: 10.1128/aem.34.2.237-239.1977 |
[50] |
Chen ZJ, Han S, Zhou D, et al. Effects of oral exposure to titanium dioxide nanoparticles on gut microbiota and gut-associated metabolism in vivo. Nanoscale, 2019; 11, 22398−412. doi: 10.1039/C9NR07580A |
[51] |
Guo PT, Zhang K, Ma X, et al. Clostridium species as probiotics: potentials and challenges. J Anim Sci Biotechnol, 2020; 11, 24. doi: 10.1186/s40104-019-0402-1 |
[52] |
Lacorte E, Gervasi G, Bacigalupo I, et al. A systematic review of the microbiome in children with neurodevelopmental disorders. Front Neurol, 2019; 10, 727. doi: 10.3389/fneur.2019.00727 |
[53] |
Crane J. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli. Gut Microbes, 2013; 4, 388−91. doi: 10.4161/gmic.25584 |
[54] |
Matte A, Louie GV, Sivaraman J, et al. Structure of the pseudouridine synthase RsuA from Haemophilus influenzae. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2005; 61, 350−4. |
[55] |
Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, et al. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet, 2015; 6, 148. |
[56] |
Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol, 2015; 23, 141−7. doi: 10.1016/j.mib.2014.11.013 |
[57] |
Schoefer L, Mohan R, Schwiertz A, et al. Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl Environ Microbiol, 2003; 69, 5849−54. doi: 10.1128/AEM.69.10.5849-5854.2003 |
[58] |
Luo JY, Chen YG, Feng LY. Polycyclic aromatic hydrocarbon affects acetic acid production during anaerobic fermentation of waste activated sludge by altering activity and viability of acetogen. Environ Sci Technol, 2016; 50, 6921−9. doi: 10.1021/acs.est.6b00003 |
[59] |
Binda C, Lopetuso LR, Rizzatti G, et al. Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig Liver Dis, 2018; 50, 421−428. doi: 10.1016/j.dld.2018.02.012 |