[1] |
Mehlman MA. Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industries. Part XXX: Causal relationship between chronic myelogenous leukemia and benzene-containing solvents. Ann N Y Acad Sci, 2006; 1076, 110−9. doi: 10.1196/annals.1371.065 |
[2] |
Spatari G, Allegra A, Carrieri M, et al. Epigenetic effects of benzene in hematologic neoplasms: the altered gene expression. Cancers (Basel), 2021; 13, 2392. doi: 10.3390/cancers13102392 |
[3] |
McDonald TA, Holland NT, Skibola C, et al. Hypothesis: phenol and hydroquinone derived mainly from diet and gastrointestinal flora activity are causal factors in leukemia. Leukemia, 2001; 15, 10−20. doi: 10.1038/sj.leu.2401981 |
[4] |
Zhang LP, McHale CM, Rothman N, et al. Systems biology of human benzene exposure. Chem Biol Interact, 2010; 184, 86−93. doi: 10.1016/j.cbi.2009.12.011 |
[5] |
Sarma SN, Kim YJ, Ryu JC. Differential gene expression profiles of human leukemia cell lines exposed to benzene and its metabolites. Environ Toxicol Pharmacol, 2011; 32, 285−95. doi: 10.1016/j.etap.2011.06.001 |
[6] |
Rubio V, Zhang JW, Valverde M, et al. Essential role of Nrf2 in protection against hydroquinone- and benzoquinone-induced cytotoxicity. Toxicol in Vitro, 2011; 25, 521−9. doi: 10.1016/j.tiv.2010.10.021 |
[7] |
Wu XR, Xue M, Li XF, et al. Phenolic metabolites of benzene inhibited the erythroid differentiation of K562 cells. Toxicol Lett, 2011; 203, 190−9. doi: 10.1016/j.toxlet.2011.03.012 |
[8] |
Tan Q, Li JY, Peng JM, et al. E4F1 silencing inhibits cell growth through cell‐cycle arrest in malignant transformed cells induced by hydroquinone. J Biochem Mol Toxicol, 2019; 33, e22269. doi: 10.1002/jbt.22269 |
[9] |
Liang BX, Chen YC, Yuan WX, et al. Down-regulation of miRNA-451a and miRNA-486-5p involved in benzene-induced inhibition on erythroid cell differentiation in vitro and in vivo. Arch. Toxicol, 2018; 92, 259−72. |
[10] |
Li Y, Wu XR, Li XF, et al. Changes in DNA methylation of erythroid-specific genes in K562 cells exposed to phenol and hydroquinone. Toxicology, 2013; 312, 108−14. doi: 10.1016/j.tox.2013.08.007 |
[11] |
Tang KY, Yu CH, Jiang L, et al. Long-term exposure of K562 cells to benzene metabolites inhibited erythroid differentiation and elevated methylation in erythroid specific genes. Toxicol Res, 2016; 5, 1284−97. doi: 10.1039/C6TX00143B |
[12] |
Ishihama M, Toyooka T, Ibuki Y. Generation of phosphorylated histone H2AX by benzene metabolites. Toxicol in Vitro, 2008; 22, 1861−1868. doi: 10.1016/j.tiv.2008.09.005 |
[13] |
Zeng MJ, Chen SP, Zhang K, et al. Epigenetic changes involved in hydroquinone-induced mutations. Toxin Reviews, 2021; 40, 527−34. doi: 10.1080/15569543.2020.1744660 |
[14] |
Chen YT, Chen SY, Liang HR, et al. Bcl-2 protects TK6 cells against hydroquinone-induced apoptosis through PARP-1 cytoplasm translocation and stabilizing mitochondrial membrane potential. Environ Mol Mutagen, 2018; 59, 49−59. doi: 10.1002/em.22126 |
[15] |
Yu CH, Suriguga, Li Y, et al. The Role of ROS in Hydroquinone-induced Inhibition of K562 Cell Erythroid Differentiation. Biomed Environ Sci, 2014; 27, 212−4. |
[16] |
Wang Y, Zhang GY, Han QL, et al. Phenolic metabolites of benzene induced caspase-dependent cytotoxicities to K562 cells accompanied with decrease in cell surface sialic acids. Environ Toxicol, 2014; 29, 1437−51. doi: 10.1002/tox.21874 |
[17] |
Mozzoni P, Poli D, Pinelli S, et al. Benzene exposure and MicroRNAs expression: in vitro, in vivo and human findings. Int J Environ Res Public Health, 2023; 20, 1920. doi: 10.3390/ijerph20031920 |
[18] |
Yu CH, Yang SQ, Li L, et al. Identification of potential pathways and microRNA-mRNA networks associated with benzene metabolite hydroquinone-induced hematotoxicity in human leukemia K562 cells. BMC Pharmacol Toxicol, 2022; 23, 20. doi: 10.1186/s40360-022-00556-8 |
[19] |
Yipel M, İlhan A. Potentiation of toxicology with proteomics: toxicoproteomics. Int J Vet Anim Res, 2022; 5, 36−9. |
[20] |
Hansen MS, Rasmussen M, Grauslund J, et al. Proteomic analysis of vitreous humour of eyes with diabetic macular oedema: a systematic review. Acta Ophthalmol, 2022; 100, e1043−51. |
[21] |
Hanash S. Disease proteomics. Nature, 2003; 422, 226−32. doi: 10.1038/nature01514 |
[22] |
Dowling VA, Sheehan D. Proteomics as a route to identification of toxicity targets in environmental toxicology. Proteomics, 2006; 6, 5597−604. doi: 10.1002/pmic.200600274 |
[23] |
Hall DR, Peng H. Characterizing physical protein targets of chemical contaminants with chemical proteomics: Is it time to fill a crucial environmental toxicology knowledge gap? Comparat Biochem Physiol Part D Genom Proteom, 2020; 34, 100655. |
[24] |
Hu JJ, Ma HM, Zhang WB, et al. Effects of benzene and its metabolites on global DNA methylation in human normal hepatic l02 cells: effects of benzene and its metabolites on global DNA methylation. Environ Toxicol, 2014; 29, 108−16. doi: 10.1002/tox.20777 |
[25] |
Guo JM, Miao Y, Xiao BX, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol, 2009; 24, 652−7. doi: 10.1111/j.1440-1746.2008.05666.x |
[26] |
McHale CM, Zhang LP, Lan Q, et al. Global gene expression profiling of a population exposed to a range of benzene levels. Environ Health Perspect, 2011; 119, 628−40. doi: 10.1289/ehp.1002546 |
[27] |
Lozzio CB, Lozzio BB. Human chronic Myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood, 1975; 45, 321−34. doi: 10.1182/blood.V45.3.321.321 |
[28] |
Andersson LC, Jokinen M, Gahmberg CG. Induction of erythroid differentiation in the human leukaemia cell line K562. Nature, 1979; 278, 364−5. doi: 10.1038/278364a0 |
[29] |
Peterson AC, Russell JD, Bailey DJ, et al. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteom, 2012; 11, 1475−88. doi: 10.1074/mcp.O112.020131 |
[30] |
Van Der Ende EL, Meeter LH, Stingl C, et al. Novel CSF biomarkers in genetic frontotemporal dementia identified by proteomics. Ann Clin Transl Neurol, 2019; 6, 698−707. doi: 10.1002/acn3.745 |
[31] |
Di B, Jia HL, Luo OJ, et al. Identification and validation of predictive factors for progression to severe COVID-19 pneumonia by proteomics. Sig Transduct Target Ther, 2020; 5, 217. doi: 10.1038/s41392-020-00333-1 |
[32] |
Ma XJ, Zhang X, Luo J, et al. MiR-486-5p-directed MAGI1/Rap1/RASSF5 signaling pathway contributes to hydroquinone-induced inhibition of erythroid differentiation in K562 cells. Toxicol in Vitro, 2020; 66, 104830. doi: 10.1016/j.tiv.2020.104830 |
[33] |
Yu CH, Yang SQ, Zhang YJ, et al. The role of GATA switch in benzene metabolite hydroquinone inhibiting erythroid differentiation in K562 cells. Arch Toxicol, 2023; 97, 2169−81. doi: 10.1007/s00204-023-03541-0 |
[34] |
Bromberg J, Darnell JE. The role of STATs in transcriptional control and their impact on cellular function. Oncogene, 2000; 19, 2468−73. doi: 10.1038/sj.onc.1203476 |
[35] |
Coffer PJ, Koenderman L, de Groot RP. The role of STATs in myeloid differentiation and leukemia. Oncogene, 2000; 19, 2511−22. doi: 10.1038/sj.onc.1203479 |
[36] |
Fasouli ES, Katsantoni E. JAK-STAT in early hematopoiesis and leukemia. Front Cell Dev Biol, 2021; 9, 669363. doi: 10.3389/fcell.2021.669363 |
[37] |
Faridounnia M, Folkers GE, Boelens R. Function and interactions of ERCC1-XPF in DNA damage response. Molecules, 2018; 23, 3205. doi: 10.3390/molecules23123205 |
[38] |
Wang SL, Zhao H, Zhou B, et al. Polymorphisms in ERCC1 and susceptibility to childhood acute lymphoblastic leukemia in a Chinese population. Leuk Res, 2006; 30, 1341−5. doi: 10.1016/j.leukres.2006.03.027 |
[39] |
Adès L, Itzykson R, Fenaux P. Myelodysplastic syndromes. Lancet, 2014; 383, 2239−52. doi: 10.1016/S0140-6736(13)61901-7 |
[40] |
Huang HJ, Xu CL, Gao J, et al. Severe ineffective erythropoiesis discriminates prognosis in myelodysplastic syndromes: analysis based on 776 patients from a single centre. Blood Cancer J, 2020; 10, 83. doi: 10.1038/s41408-020-00349-4 |
[41] |
Kim YJ, Woo HD, Kim BM, et al. Risk assessment of hydroquinone: differential responses of cell growth and lethality correlated to hydroquinone concentration. J Toxicol Environ Health, Part A, 2009; 72, 1272−8. doi: 10.1080/15287390903212279 |
[42] |
Yang XH, Li C, Yu GC, et al. Ligand-independent activation of AhR by hydroquinone mediates benzene-induced hematopoietic toxicity. Chem Biol Interact, 2022; 355, 109845. doi: 10.1016/j.cbi.2022.109845 |
[43] |
Song SM, Cerella C, Orlikova-Boyer B, et al. Hydroquinone-derivatives induce cell death in chronic Myelogenous leukemia. Proceedings, 2019; 11, 28. |
[44] |
Sun ZW, Chen C, Wang L, et al. S-allyl cysteine protects retinal pigment epithelium cells from hydroquinone-induced apoptosis through mitigating cellular response to oxidative stress. Eur Rev Med Pharmacol Sci, 2020; 24, 2120−8. |
[45] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell, 2011; 144, 646−74. doi: 10.1016/j.cell.2011.02.013 |
[46] |
Dewi R, Hamid ZA, Rajab N, et al. Genetic, epigenetic, and lineage-directed mechanisms in benzene-induced malignancies and hematotoxicity targeting hematopoietic stem cells niche. Hum Exp Toxicol, 2020; 39, 577−95. doi: 10.1177/0960327119895570 |
[47] |
Baker SJ, Reddy EP. CDK4: A key player in the cell cycle, development, and cancer. Genes Cancer, 2012; 3, 658−69. doi: 10.1177/1947601913478972 |
[48] |
Piezzo M, Cocco S, Caputo R, et al. Targeting cell cycle in breast cancer: CDK4/6 inhibitors. Int J Mol Sci, 2020; 21, 6479. doi: 10.3390/ijms21186479 |
[49] |
Schneeweiss-Gleixner M, Byrgazov K, Stefanzl G, et al. CDK4/CDK6 inhibition as a novel strategy to suppress the growth and survival of BCR-ABL1T315I+ clones in TKI-resistant CML. EBioMedicine, 2019; 50, 111−21. doi: 10.1016/j.ebiom.2019.11.004 |
[50] |
Bunting KD. STAT5 signaling in normal and pathologic hematopoiesis. Front Biosci, 2007; 12, 2807−20. doi: 10.2741/2274 |
[51] |
Darnell JE. STATs and gene regulation. Science, 1997; 277, 1630−5. doi: 10.1126/science.277.5332.1630 |
[52] |
Furtek SL, Backos DS, Matheson CJ, et al. Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chem Biol, 2016; 11, 308−18. doi: 10.1021/acschembio.5b00945 |
[53] |
Dorritie KA, McCubrey JA, Johnson DE. STAT transcription factors in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia, 2014; 28, 248−57. doi: 10.1038/leu.2013.192 |
[54] |
Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994; 264, 1415−21. doi: 10.1126/science.8197455 |
[55] |
Miura Y, Tsujioka T, Nishimura Y, et al. TRAIL expression up-regulated by interferon-γ via phosphorylation of STAT1 induces myeloma cell death. Anticancer Res, 2006; 26, 4115−24. |
[56] |
Li J, Williams MJ, Park HJ, et al. STAT1 is essential for HSC function and maintains MHCIIhi stem cells that resist myeloablation and neoplastic expansion. Blood, 2022; 140, 1592−606. |
[57] |
Hankey PA. Regulation of hematopoietic cell development and function by Stat3. Front Biosci, 2009; 14, 5273−90. doi: 10.2741/3597 |
[58] |
Chong PSY, Chng WJ, De Mel S. STAT3: A promising therapeutic target in multiple myeloma. Cancers (Basel), 2019; 11, 731. doi: 10.3390/cancers11050731 |
[59] |
Rani A, Murphy JJ. STAT5 in Cancer and Immunity. J Interferon Cytokine Res, 2016; 36, 226−37. doi: 10.1089/jir.2015.0054 |
[60] |
Kimura A, Rieger MA, Simone JM, et al. The transcription factors STAT5A/B regulate GM-CSF-mediated granulopoiesis. Blood, 2009; 114, 4721−8. |
[61] |
Wang ZQ, Bunting KD. STAT5 in hematopoietic stem cell biology and transplantation. JAK-STAT, 2013; 2, e27159. doi: 10.4161/jkst.27159 |