[1] Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol, 2012; 9, 688−99. doi:  10.1038/nrclinonc.2012.194
[2] Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour Biol, 2010; 31, 363−72. doi:  10.1007/s13277-010-0042-8
[3] Mole RH. Whole body irradiation-radiobiology or medicine. Brit J Radiol, 1953; 26, 234−41. doi:  10.1259/0007-1285-26-305-234
[4] Daguenet E, Louati S, Wozny AS, et al. Radiation-induced bystander and abscopal effects: important lessons from preclinical models. Br J Cancer, 2020; 123, 339−48. doi:  10.1038/s41416-020-0942-3
[5] Rodriguez-Ruiz ME, Vanpouille-Box C, Melero I, et al. Immunological mechanisms responsible for radiation-induced abscopal effect. Trends Immunol, 2018; 39, 644−55. doi:  10.1016/j.it.2018.06.001
[6] Barker HE, Paget JTE, Khan AA, et al. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer, 2015; 15, 409−25. doi:  10.1038/nrc3958
[7] Demaria S, Ng B, Devitt ML, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys, 2004; 58, 862−70. doi:  10.1016/j.ijrobp.2003.09.012
[8] Mondini M, Loyher PL, Hamon P, et al. CCR2-Dependent recruitment of tregs and monocytes following radiotherapy is associated with TNFα-Mediated resistance. Cancer Immunol Res, 2019; 7, 376−87. doi:  10.1158/2326-6066.CIR-18-0633
[9] Chen YB, Song YC, Du W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci, 2019; 26, 78. doi:  10.1186/s12929-019-0568-z
[10] Chanmee T, Ontong P, Konno K, et al. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers, 2014; 6, 1670−90. doi:  10.3390/cancers6031670
[11] Pinto AT, Pinto ML, Cardoso AP, et al. Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Sci Rep, 2016; 6, 18765. doi:  10.1038/srep18765
[12] Okubo M, Kioi M, Nakashima H, et al. M2-polarized macrophages contribute to neovasculogenesis, leading to relapse of oral cancer following radiation. Sci Rep, 2016; 6, 27548. doi:  10.1038/srep27548
[13] Ivashkiv LB. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol, 2018; 18, 545−58. doi:  10.1038/s41577-018-0029-z
[14] Anfray C, Ummarino A, Andón FT, et al. Current strategies to target tumor-associated-macrophages to improve anti-tumor immune responses. Cells, 2019; 9, 46. doi:  10.3390/cells9010046
[15] Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov, 2018; 17, 887−904. doi:  10.1038/nrd.2018.169
[16] Ngwa W, Irabor OC, Schoenfeld JD, et al. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer, 2018; 18, 313−22. doi:  10.1038/nrc.2018.6
[17] Victor CTS, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature, 2015; 520, 373−7. doi:  10.1038/nature14292
[18] Wiehagen KR, Girgis NM, Yamada DH, et al. Combination of CD40 agonism and CSF-1R blockade reconditions tumor-associated macrophages and drives potent antitumor immunity. Cancer Immunol Res, 2017; 5, 1109−21. doi:  10.1158/2326-6066.CIR-17-0258
[19] Weber JS, D'Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol, 2015; 16, 375−84. doi:  10.1016/S1470-2045(15)70076-8
[20] Liu Y, Dong YP, Kong L, et al. Abscopal effect of radiotherapy combined with immune checkpoint inhibitors. J Hematol Oncol, 2018; 11, 104. doi:  10.1186/s13045-018-0647-8
[21] Dewan MZ, Galloway AE, Kawashima N, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res, 2009; 15, 5379−88. doi:  10.1158/1078-0432.CCR-09-0265
[22] Wood J, Yasmin-Karim S, Mueller R, et al. Single radiotherapy fraction with local Anti-CD40 therapy generates effective abscopal responses in mouse models of cervical cancer. Cancers, 2020; 12, 1026. doi:  10.3390/cancers12041026
[23] Kwon ED, Drake CG, Scher HI, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol, 2014; 15, 700−12. doi:  10.1016/S1470-2045(14)70189-5
[24] Teng FF, Kong L, Meng XJ, et al. Radiotherapy combined with immune checkpoint blockade immunotherapy: achievements and challenges. Cancer Lett, 2015; 365, 23−9. doi:  10.1016/j.canlet.2015.05.012
[25] Picozzi VJ, Abrams RA, Decker PA, et al. Multicenter phase II trial of adjuvant therapy for resected pancreatic cancer using cisplatin, 5-fluorouracil, and interferon-alfa-2b-based chemoradiation: ACOSOG Trial Z05031. Ann Oncol, 2011; 22, 348−54. doi:  10.1093/annonc/mdq384
[26] Ding WW, Lim D, Wang ZD, et al. 2-hexyl-4-pentynoic acid, a potential therapeutic for breast carcinoma by influencing RPA2 hyperphosphorylation-mediated DNA repair. DNA Repair, 2020; 95, 102940. doi:  10.1016/j.dnarep.2020.102940
[27] Guerriero JL, Sotayo A, Ponichtera HE, et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature, 2017; 543, 428−32. doi:  10.1038/nature21409
[28] Liu GC, Wang H, Zhang FM, et al. The effect of VPA on increasing radiosensitivity in osteosarcoma cells and primary-culture cells from chemical carcinogen-induced breast cancer in rats. Int J Mol Sci, 2017; 18, 1027. doi:  10.3390/ijms18051027
[29] Gandhi SJ, Minn AJ, Vonderheide RH, et al. Awakening the immune system with radiation: optimal dose and fractionation. Cancer Lett, 2015; 368, 185−90. doi:  10.1016/j.canlet.2015.03.024
[30] Klug F, Prakash H, Huber PE, et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell, 2013; 24, 589−602. doi:  10.1016/j.ccr.2013.09.014
[31] Aravindan S, Natarajan M, Ramraj SK, et al. Abscopal effect of low-LET γ-radiation mediated through Rel protein signal transduction in a mouse model of nontargeted radiation response. Cancer Gene Ther, 2014; 21, 54−9. doi:  10.1038/cgt.2013.72
[32] Schaue D, Ratikan JA, Iwamoto KS, et al. Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys, 2012; 83, 1306−10. doi:  10.1016/j.ijrobp.2011.09.049
[33] Dong C, Zhang FM, Luo Y, et al. p53 suppresses hyper-recombination by modulating BRCA1 function. DNA Repair, 2015; 33, 60−9. doi:  10.1016/j.dnarep.2015.06.005
[34] Zhang JR, Willers H, Feng ZH, et al. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol, 2004; 24, 708−18. doi:  10.1128/MCB.24.2.708-718.2004
[35] Cortez-Retamozo V, Etzrodt M, Newton A, et al. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci USA, 2012; 109, 2491−6. doi:  10.1073/pnas.1113744109
[36] Biswas SK, Allavena P, Mantovani A. Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol, 2013; 35, 585−600. doi:  10.1007/s00281-013-0367-7
[37] Lahmar Q, Keirsse J, Laoui D, et al. Tissue-resident versus monocyte-derived macrophages in the tumor microenvironment. Biochim Biophys Acta Rev Cancer, 2016; 1865, 23−34. doi:  10.1016/j.bbcan.2015.06.009
[38] Frey B, Rückert M, Deloch L, et al. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol Rev, 2017; 280, 231−48. doi:  10.1111/imr.12572
[39] Safi S, Beckhove P, Warth A, et al. A randomized phase II study of radiation induced immune boost in operable non-small cell lung cancer (RadImmune trial). BMC Cancer, 2015; 15, 988. doi:  10.1186/s12885-015-2006-2
[40] Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Oncol, 2009; 10, 718−26. doi:  10.1016/S1470-2045(09)70082-8
[41] Kingsley DPE. An interesting case of possible abscopal effect in malignant melanoma. Br J Radiol, 1975; 48, 863−6. doi:  10.1259/0007-1285-48-574-863
[42] Dagoglu N, Karaman S, Caglar HB, et al. Abscopal effect of radiotherapy in the immunotherapy era: systematic review of reported cases. Cureus, 2019; 11, e4103.
[43] Formenti SC, Rudqvist NP, Golden E, et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med, 2018; 24, 1845−51. doi:  10.1038/s41591-018-0232-2
[44] Cerbone L, Rebuzzi SE, Lattanzi E, et al. Abscopal effect after hypofractionated radiotherapy in metastatic renal cell carcinoma pretreated with pazopanib. Immunotherapy, 2020; 12, 869−78. doi:  10.2217/imt-2020-0072
[45] Liu HC, Viswanath DI, Pesaresi F, et al. Potentiating antitumor efficacy through radiation and sustained intratumoral delivery of Anti-CD40 and Anti-PDL1. Int J Radiat Oncol Biol Phys, 2020. doi:  10.1016/j.ijrobp.2020.07.2326
[46] Mondini M, Levy A, Meziani L, et al. Radiotherapy-immunotherapy combinations-perspectives and challenges. Mol Oncol, 2020; 14, 1529−37. doi:  10.1002/1878-0261.12658
[47] Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer, 2016; 54, 139−48. doi:  10.1016/j.ejca.2015.11.016
[48] Baeten CIM, Castermans K, Lammering G, et al. Effects of radiotherapy and chemotherapy on angiogenesis and leukocyte infiltration in rectal cancer. Int J Radiat Oncol, 2006; 66, 1219−27. doi:  10.1016/j.ijrobp.2006.07.1362
[49] Tsai CS, Chen FH, Wang CC, et al. Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. Int J Radiat Oncol Biol Phys, 2007; 68, 499−507. doi:  10.1016/j.ijrobp.2007.01.041
[50] Tsukimoto M, Homma T, Mutou Y, et al. 0.5 Gy gamma radiation suppresses production of TNF-alpha through up-regulation of MKP-1 in mouse macrophage RAW264.7 cells. Radiat Res, 2009; 171, 219−24. doi:  10.1667/RR1351.1
[51] Folkman J. Tumor angiogenesis: therapeutic implications. New Engl J Med, 1971; 285, 1182−6. doi:  10.1056/NEJM197111182852108
[52] Przybyl J, Kowalewska M, Quattrone A, et al. Abstract 3182: tumor associated macrophages in undifferentiated uterine sarcoma: association with angiogenesis and therapeutic implications. Cancer Res, 2016; 76.
[53] Zhu CB, Kros JM, Cheng C, et al. The contribution of tumor-associated macrophages in glioma neo-angiogenesis and implications for anti-angiogenic strategies. Neuro Oncol, 2017; 19, 1435−46. doi:  10.1093/neuonc/nox081