[1] |
Wang CY, Zhang YZ, Zhang Y, et al. A bibliometric analysis of gastric cancer liver metastases: advances in mechanisms of occurrence and treatment options. Int J Surg, 2024; 110, 2288−99. doi: 10.1097/JS9.0000000000001068 |
[2] |
Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz Gastroenterol, 2019; 14, 26−38. |
[3] |
Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer. Lancet, 2020; 396, 635−48. doi: 10.1016/S0140-6736(20)31288-5 |
[4] |
Praud D, Rota M, Pelucchi C, et al. Cigarette smoking and gastric cancer in the Stomach Cancer Pooling (StoP) Project. Eur J Cancer Prev, 2018; 27, 124−33. doi: 10.1097/CEJ.0000000000000290 |
[5] |
Vitelli-Storelli F, Rubín-García M, Pelucchi C, et al. Family history and gastric cancer risk: a pooled investigation in the stomach cancer pooling (STOP) project consortium. Cancers (Basel), 2021; 13, 3844. doi: 10.3390/cancers13153844 |
[6] |
Sexton RE, Al Hallak MN, Diab M, et al. Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer Metastasis Rev, 2020; 39, 1179−203. doi: 10.1007/s10555-020-09925-3 |
[7] |
Wang FJ, Gómez-Sintes R, Boya P. Lysosomal membrane permeabilization and cell death. Traffic, 2018; 19, 918−31. doi: 10.1111/tra.12613 |
[8] |
Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal biology and function: modern view of cellular debris bin. Cells, 2020; 9, 1131. doi: 10.3390/cells9051131 |
[9] |
Rai R, Dey DK, Benbrook DM, et al. Niclosamide causes lysosome-dependent cell death in endometrial cancer cells and tumors. Biomed Pharmacother, 2023; 161, 114422. doi: 10.1016/j.biopha.2023.114422 |
[10] |
Berg AL, Rowson-Hodel A, Wheeler MR, et al. Engaging the lysosome and lysosome-dependent cell death in cancer. In: Mayrovitz HN. Breast Cancer. Exon Publications. 2022. |
[11] |
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ, 2018; 25, 486−541. doi: 10.1038/s41418-017-0012-4 |
[12] |
Zhou W, Guo YL, Zhang X, et al. Lys05 induces lysosomal membrane permeabilization and increases radiosensitivity in glioblastoma. J Cell Biochem, 2020; 121, 2027−37. doi: 10.1002/jcb.29437 |
[13] |
Raha S, Kim SM, Lee HJ, et al. Naringin induces lysosomal permeabilization and autophagy cell death in AGS gastric cancer cells. Am J Chin Med, 2020; 48, 679−702. doi: 10.1142/S0192415X20500342 |
[14] |
Wooten J, Mavingire N, Araújo CA, et al. Dibenzyl trisulfide induces caspase-independent death and lysosomal membrane permeabilization of triple-negative breast cancer cells. Fitoterapia, 2022; 160, 105203. doi: 10.1016/j.fitote.2022.105203 |
[15] |
Stahl-Meyer K, Bilgin M, Holland LKK, et al. Galactosyl- and glucosylsphingosine induce lysosomal membrane permeabilization and cell death in cancer cells. PLoS One, 2022; 17, e0277058. doi: 10.1371/journal.pone.0277058 |
[16] |
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med, 2013; 19, 1423−37. doi: 10.1038/nm.3394 |
[17] |
Lu Q, Kou DQ, Lou SH, et al. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol, 2024; 17, 16. doi: 10.1186/s13045-024-01535-8 |
[18] |
Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med, 2018; 24, 541−50. doi: 10.1038/s41591-018-0014-x |
[19] |
Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol, 2013; 14, 1014−22. doi: 10.1038/ni.2703 |
[20] |
Barry KC, Hsu J, Broz ML, et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat Med, 2018; 24, 1178−91. doi: 10.1038/s41591-018-0085-8 |
[21] |
Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008; 27, 5904−12. doi: 10.1038/onc.2008.271 |
[22] |
Zeng DQ, Li MY, Zhou R, et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol Res, 2019; 7, 737−50. doi: 10.1158/2326-6066.CIR-18-0436 |
[23] |
Zeng DQ, Wu JN, Luo HY, et al. Tumor microenvironment evaluation promotes precise checkpoint immunotherapy of advanced gastric cancer. J Immunother Cancer, 2021; 9, e002467. doi: 10.1136/jitc-2021-002467 |
[24] |
Zhang ZQ, Yue PF, Lu TQ, et al. Role of lysosomes in physiological activities, diseases, and therapy. J Hematol Oncol, 2021; 14, 79. doi: 10.1186/s13045-021-01087-1 |
[25] |
Zou YT, Xie JD, Zheng SQ, et al. Leveraging diverse cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery. Int J Surg, 2022; 107, 106936. doi: 10.1016/j.ijsu.2022.106936 |
[26] |
Necula L, Matei L, Dragu D, et al. Recent advances in gastric cancer early diagnosis. World J Gastroenterol, 2019; 25, 2029−44. doi: 10.3748/wjg.v25.i17.2029 |
[27] |
Feng DC, Zhu WZ, Shi X, et al. Identification of senescence-related molecular subtypes and key genes for prostate cancer. Asian J Androl, 2023; 25, 223−9. doi: 10.4103/aja202258 |
[28] |
Fei ZH, Xie RR, Chen Z, et al. Establishment of a novel risk score system of immune genes associated with prognosis in esophageal carcinoma. Front Oncol, 2021; 11, 625271. doi: 10.3389/fonc.2021.625271 |
[29] |
Ni ZZ, Zhang JQ, Huang CS, et al. Novel insight on predicting prognosis of gastric cancer based on inflammation. Transl Cancer Res, 2022; 11, 3711−23. doi: 10.21037/tcr-22-1042 |
[30] |
Lin MS, Zhong HY, Yim RLH, et al. Pan-cancer analysis of oncogenic TNFAIP2 identifying its prognostic value and immunological function in acute myeloid leukemia. BMC Cancer, 2022; 22, 1068. doi: 10.1186/s12885-022-10155-9 |
[31] |
Li JN, Song YF, Yu BQ, et al. TNFAIP2 promotes non-small cell lung cancer cells and targeted by miR-145-5p. DNA Cell Biol, 2020; 39, 1256−63. doi: 10.1089/dna.2020.5415 |
[32] |
Xu T, Yang YM, Chen ZH, et al. TNFAIP2 confers cisplatin resistance in head and neck squamous cell carcinoma via KEAP1/NRF2 signaling. J Exp Clin Cancer Res, 2023; 42, 190. doi: 10.1186/s13046-023-02775-1 |
[33] |
Li J, Yu T, Sun J, et al. Comprehensive integration of single-cell RNA and transcriptome RNA sequencing to establish a pyroptosis-related signature for improving prognostic prediction of gastric cancer. Comput Struct Biotechnol J, 2024; 23, 990−1004. doi: 10.1016/j.csbj.2024.02.002 |
[34] |
Wang CL, Su YJ, Zhang LM, et al. The function of SARI in modulating epithelial-mesenchymal transition and lung adenocarcinoma metastasis. PLoS One, 2012; 7, e38046. doi: 10.1371/journal.pone.0038046 |
[35] |
Ma HQ, Liang XT, Chen YB, et al. Decreased expression of BATF2 is associated with a poor prognosis in hepatocellular carcinoma. Int J Cancer, 2011; 128, 771−7. doi: 10.1002/ijc.25407 |
[36] |
Yu C, Li DG, Yan Q, et al. Circ_0005927 Inhibits the progression of colorectal cancer by regulating miR-942-5p/BATF2 axis. Cancer Manag Res, 2021; 13, 2295−306. doi: 10.2147/CMAR.S281377 |
[37] |
Xie JW, Huang XB, Chen QY, et al. m6A modification-mediated BATF2 acts as a tumor suppressor in gastric cancer through inhibition of ERK signaling. Mol Cancer, 2020; 19, 114. doi: 10.1186/s12943-020-01223-4 |
[38] |
Perrot CY, Karampitsakos T, Unterman A, et al. Mast-cell expressed membrane protein-1 is expressed in classical monocytes and alveolar macrophages in idiopathic pulmonary fibrosis and regulates cell chemotaxis, adhesion, and migration in a TGFβ-dependent manner. Am J Physiol Cell Physiol, 2024; 326, C964−77. doi: 10.1152/ajpcell.00563.2023 |
[39] |
Xie WF, Chen L, Chen L, et al. RETRACTED ARTICLE: silencing of long non-coding RNA MALAT1 suppresses inflammation in septic mice: role of microRNA-23a in the down-regulation of MCEMP1 expression. Inflamm Res, 2020; 69, 179−90. doi: 10.1007/s00011-019-01306-z |
[40] |
Huang P, Liu YW, Jia BQ. The expression, prognostic value, and immunological correlation of MCEMP1 and its potential role in gastric cancer. J Oncol, 2022; 2022, 8167496. |
[41] |
Wang DJ, Gu YM, Huo CD, et al. MCEMP1 is a potential therapeutic biomarker associated with immune infiltration in advanced gastric cancer microenvironment. Gene, 2022; 840, 146760. doi: 10.1016/j.gene.2022.146760 |
[42] |
Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res, 2019; 79, 4557−66. |
[43] |
Wu YJ, Nai AT, He GC, et al. DPYSL2 as potential diagnostic and prognostic biomarker linked to immune infiltration in lung adenocarcinoma. World J Surg Oncol, 2021; 19, 274. doi: 10.1186/s12957-021-02379-z |
[44] |
Du TT, Gao J, Li PL, et al. Pyroptosis, metabolism, and tumor immune microenvironment. Clin Transl Med, 2021; 11, e492. doi: 10.1002/ctm2.492 |
[45] |
Zhang H, Luo YB, Wu WT, et al. The molecular feature of macrophages in tumor immune microenvironment of glioma patients. Comput Struct Biotechnol J, 2021; 19, 4603−18. doi: 10.1016/j.csbj.2021.08.019 |
[46] |
Tu DY, Dou J, Wang MK, et al. M2 macrophages contribute to cell proliferation and migration of breast cancer. Cell Biol Int, 2021; 45, 831−8. doi: 10.1002/cbin.11528 |
[47] |
Dai XM, Lu LS, Deng SK, et al. USP7 targeting modulates anti-tumor immune response by reprogramming Tumor-associated Macrophages in Lung Cancer. Theranostics, 2020; 10, 9332−47. doi: 10.7150/thno.47137 |
[48] |
Xie YW, Chen ZL, Zhong QY, et al. M2 macrophages secrete CXCL13 to promote renal cell carcinoma migration, invasion, and EMT. Cancer Cell Int, 2021; 21, 677. doi: 10.1186/s12935-021-02381-1 |
[49] |
Xiao Y, Yang K, Wang Z, et al. CD44-mediated poor prognosis in glioma is associated with M2-polarization of tumor-associated macrophages and immunosuppression. Front Surg, 2022; 8, 775194. doi: 10.3389/fsurg.2021.775194 |
[50] |
Li W, Zhang X, Wu FL, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis, 2019; 10, 918. doi: 10.1038/s41419-019-2131-y |
[51] |
Ning ZK, Hu CG, Huang C, et al. Molecular subtypes and CD4+ memory t cell-based signature associated with clinical outcomes in gastric cancer. Front Oncol, 2021; 10, 626912. doi: 10.3389/fonc.2020.626912 |
[52] |
Crespo MA, Rapuano CJ, Syed ZA. Applications of mitomycin c in cornea and external disease. Turk J Ophthalmol, 2023; 53, 175−82. doi: 10.4274/tjo.galenos.2023.97932 |
[53] |
Yang HM, Wang M, Huang YH, et al. In vitro and in vivo evaluation of a novel mitomycin nanomicelle delivery system. RSC Adv, 2019; 9, 14708−17. doi: 10.1039/C9RA02660F |
[54] |
Sahiner N, Ayyala RS, Suner SS. Nontoxic natural polymeric particle vehicles derived from hyaluronic acid and mannitol as mitomycin c carriers for bladder cancer treatment. ACS Appl Bio Mater, 2022; 5, 5554−66. doi: 10.1021/acsabm.2c00558 |
[55] |
Gorodnova TV, Sokolenko AP, Kondratiev SV, et al. Mitomycin C plus cisplatin for systemic treatment of recurrent BRCA1-associated ovarian cancer. Invest New Drugs, 2020; 38, 1872−8. doi: 10.1007/s10637-020-00965-8 |
[56] |
Zhu LY, Chen LQ. Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett, 2019; 24, 40. doi: 10.1186/s11658-019-0164-y |
[57] |
Hashemi M, Zandieh MA, Talebi Y, et al. Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. Biomed Pharmacother, 2023; 160, 114392. doi: 10.1016/j.biopha.2023.114392 |
[58] |
Hanna SJ, McCoy-Simandle K, Leung E, et al. Tunneling nanotubes, a novel mode of tumor cell-macrophage communication in tumor cell invasion. J Cell Sci, 2019; 132, jcs223321. doi: 10.1242/jcs.223321 |