[1] Lee YJ, Lee GJ, Baek BJ, et al. Cadmium-induced up-regulation of aldo-keto reductase 1C3 expression in human nasal septum carcinoma RPMI-2650 cells:Involvement of reactive oxygen species and phosphatidylinositol 3-kinase/Akt. Environ Toxicol Pharmacol, 2011; 31, 469-78. doi:  10.1016/j.etap.2011.03.006
[2] Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol, 2009; 238, 209-14. doi:  10.1016/j.taap.2009.01.029
[3] Yu R, He L, Chen X. Effects of Cadmium on Hepatocellular DNA Damage, Proto-Oncogene Expression and Apoptosis in Rats. Biomed Environ Sci, 2007; 20, 146-53.
[4] Waalkes M. Cadmium carcinogenesis. Mutat Res, 2003; 533, 107-20. doi:  10.1016/j.mrfmmm.2003.07.011
[5] Chen S, Ren Q, Zhang J, et al. N-acetyl-L-cysteine protects against cadmium-induced neuronal apoptosis by inhibiting ROS-dependent activation of Akt/mTOR pathway in mouse brain. Neuropathol Appl Neurobiol, 2014; 40, 759-77. doi:  10.1111/nan.2014.40.issue-6
[6] Wang Y, Wu Y, Luo K, et al. The protective effects of selenium on cadmium-induced oxidative stress and apoptosis via mitochondria pathway in mice kidney. Food Chem Toxicol, 2013; 58, 61-7. doi:  10.1016/j.fct.2013.04.013
[7] Chen J, Shaikh ZA. Activation of Nrf2 by cadmium and its role in protection against cadmium-induced apoptosis in rat kidney cells. Toxicol Appl Pharmacol, 2009; 241, 81-9. doi:  10.1016/j.taap.2009.07.038
[8] Zheng JL, Yuan SS, Wu CW, et al. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio). Aquat Toxicol, 2016; 180, 36-44. doi:  10.1016/j.aquatox.2016.09.012
[9] Shinkai Y, Kimura T, Itagaki A, et al. Partial contribution of the Keap1-Nrf2 system to cadmium-mediated metallothionein expression in vascular endothelial cells. Toxicol Appl Pharmacol, 2016; 295, 37-46. doi:  10.1016/j.taap.2016.01.020
[10] Chen M, Li X, Fan R, et al. Selenium antagonizes cadmium-induced apoptosis in chicken spleen but not involving Nrf2-regulated antioxidant response. Ecotoxicol Environ Saf, 2017; 145, 503-10. doi:  10.1016/j.ecoenv.2017.08.001
[11] Staitieh BS, Egea EE, Fan X, et al. Activation of Alveolar Macrophages with Interferon-gamma Promotes Antioxidant Defenses via the Nrf2-ARE Pathway. J Clin Cell Immunol, 2015; 6, 365.
[12] Usami H, Kusano Y, Kumagai T, et al. Selective induction of the tumor marker glutathione S-transferase P1 by proteasome inhibitors. J Biol Chem, 2005; 280, 25267-76. doi:  10.1074/jbc.M501014200
[13] Kitamura M, Hiramatsu N. The oxidative stress:endoplasmic reticulum stress axis in cadmium toxicity. Biometals, 2010; 23, 941-50. doi:  10.1007/s10534-010-9296-2
[14] Liu L, Yang B, Cheng Y, et al. Ameliorative Effects of Selenium on Cadmium-Induced Oxidative Stress and Endoplasmic Reticulum Stress in the Chicken Kidney. Biol Trace Elem Res, 2015; 167, 308-19. doi:  10.1007/s12011-015-0314-7
[15] Jin Y, Zhang S, Tao R, et al. Oral exposure of mice to cadmium (Ⅱ), chromium (Ⅵ) and their mixture induce oxidative-and endoplasmic reticulum-stress mediated apoptosis in the livers. Environ Toxicol, 2016; 31, 693-705. doi:  10.1002/tox.v31.6
[16] Shirriff CS, Heikkila JJ. Characterization of cadmium chloride-induced BiP accumulation in Xenopus laevis A6 kidney epithelial cells. Comp Biochem Physiol C Toxicol Pharmacol, 2017; 191, 117-28. doi:  10.1016/j.cbpc.2016.10.003
[17] Cullinan SB, Zhang D, Hannink M, et al. Nrf2 Is a Direct PERK Substrate and Effector of PERK-Dependent Cell Survival. Mol Cell Biol, 2003; 23, 7198-209. doi:  10.1128/MCB.23.20.7198-7209.2003
[18] Chen Z, Chen J, Wu L, et al. Effects of Cadmium on PERK-Nrf2 Signaling Pathway in Kidney of Rats. Acta Med Univ Sci Technol Huazhong, 2018; 47, 59-63. (In Chinese).
[19] Dai W, Chen H, Yu R, et al. Effects of cadmium on telomerase activity, expressions of TERT, c-myc and P53, and apoptosis of rat hepatocytes. J Huazhong Univ Sci Technolog Med Sci, 2010; 30, 709-13. doi:  10.1007/s11596-010-0645-8
[20] Wallin M, Sallsten G, Lundh T, et al. Low-level cadmium exposure and effects on kidney function. Occup Environ Med, 2014; 71, 848-54. doi:  10.1136/oemed-2014-102279
[21] Hagar H, Al Malki W. Betaine supplementation protects against renal injury induced by cadmium intoxication in rats:role of oxidative stress and caspase-3. Environ Toxicol Pharmacol, 2014; 37, 803-11. doi:  10.1016/j.etap.2014.02.013
[22] Sun F, Li X, Yang C, et al. A role for PERK in the mechanism underlying fluoride-induced bone turnover. Toxicology, 2014; 325, 52-66. doi:  10.1016/j.tox.2014.07.006
[23] El-Boshy ME, Risha EF, Abdelhamid FM, et al. Protective effects of selenium against cadmium induced hematological disturbances, immunosuppressive, oxidative stress and hepatorenal damage in rats. J Trace Elem Med Biol, 2015; 29, 104-10. doi:  10.1016/j.jtemb.2014.05.009
[24] Unsal C, Kanter M, Aktas C, et al. Role of quercetin in cadmium-induced oxidative stress, neuronal damage, and apoptosis in rats. Toxicol Ind Health, 2015; 31, 1106-15. doi:  10.1177/0748233713486960
[25] Veljkovic AR, Nikolic RS, Kocic GM, et al. Protective effects of glutathione and lipoic acid against cadmium-induced oxidative stress in rat's kidney. Ren Fail, 2012; 34, 1281-7. doi:  10.3109/0886022X.2012.723661
[26] Nguyen T, Yang CS, Pickett CB. The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic Biol Med, 2004; 37, 433-41. doi:  10.1016/j.freeradbiomed.2004.04.033
[27] Li SA, Jiang WD, Feng L, et al. Dietary myo-inositol deficiency decreased the growth performances and impaired intestinal physical barrier function partly relating to nrf2, jnk, e2f4 and mlck signaling in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol, 2017; 67, 475-92. doi:  10.1016/j.fsi.2017.06.032
[28] Liu M, Reddy NM, Higbee EM, et al. The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemiareperfusion injury in mice. Kidney Int, 2014; 85, 134-41. doi:  10.1038/ki.2013.357
[29] Park JH, Choi JW, Ju EJ, et al. Antioxidant and Anti-Inflammatory Activities of a Natural Compound, Shizukahenriol, through Nrf2 Activation. Molecules, 2015; 20, 15989-6003. doi:  10.3390/molecules200915989
[30] Yan M, Zhang Y, Qin H, et al. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells:the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress. Int J Nanomedicine, 2016; 11, 529-42.
[31] Yokouchi M, Hiramatsu N, Hayakawa K, et al. Atypical, bidirectional regulation of cadmium-induced apoptosis via distinct signaling of unfolded protein response. Cell Death Differ, 2007; 14, 1467-74. doi:  10.1038/sj.cdd.4402154
[32] Nair AR, Degheselle O, Smeets K, et al. Cadmium-Induced Pathologies:Where Is the Oxidative Balance Lost (or Not)? Int J Mol Sci, 2013; 14, 6116-43. doi:  10.3390/ijms14036116
[33] Zhu YF, Li XH, Yuan ZP, et al. Allicin improves endoplasmic reticulum stress-related cognitive deficits via PERK/Nrf2 antioxidative signaling pathway. Eur J Pharmacol, 2015; 762, 239-46. doi:  10.1016/j.ejphar.2015.06.002
[34] Kim JY, Ko AR, Hyun HW, et al. PDI regulates seizure activity via NMDA receptor redox in rats. Sci Rep, 2017; 7, 42491. doi:  10.1038/srep42491
[35] Muller C, Bandemer J, Vindis C, et al. Protein disulfide isomerase modification and inhibition contribute to ER stress and apoptosis induced by oxidized low density lipoproteins. Antioxid Redox Signal, 2013; 18, 731-42. doi:  10.1089/ars.2012.4577
[36] Ishimura S, Furuhashi M, Mita T, et al. Reduction of endoplasmic reticulum stress inhibits neointima formation after vascular injury. Sci Rep, 2014; 4, 6943.
[37] Yan F, Li J, Chen J, et al. Endoplasmic reticulum stress is associated with neuroprotection against apoptosis via autophagy activation in a rat model of subarachnoid hemorrhage. Neurosci Lett, 2014; 563, 160-5. doi:  10.1016/j.neulet.2014.01.058