[1] Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas:Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract, 2017; 128, 40-50. doi:  10.1016/j.diabres.2017.03.024
[2] Gosadi IM. Assessment of the environmental and genetic factors influencing prevalence of metabolic syndrome in Saudi Arabia. Saudi Med J, 2016; 37, 12-20. doi:  10.15537/smj.2016.1.12675
[3] Velmurugan G, Ramprasath T, Swaminathan K, et al. Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis. Genome Biol, 2017; 18, 8. doi:  10.1186/s13059-016-1134-6
[4] Peris-Sampedro F, Cabré M, Basaure P, et al. Adulthood dietary exposure to a common pesticide leads to an obese-like phenotype and a diabetic profile in apoE3 mice. Environ Res, 2015; 142, 169-76. doi:  10.1016/j.envres.2015.06.036
[5] Zhang YJ, Ren M, Li JH, et al. Does Omethoate have the potential to cause insulin resistance? Environ Toxicol Pharmacol, 2014; 37, 284-90. doi:  10.1016/j.etap.2013.11.030
[6] Brøns C, Grunnet LG. Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes:a causal mechanism or an innocent bystander? Eur J Endocrinol, 2017; 176, R67-R78. doi:  10.1530/EJE-16-0488
[7] Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest, 2000; 106, 171-6. doi:  10.1172/JCI10583
[8] Gandhi GR, Jothi G, Antony PJ, et al. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. Eur J Pharmacol, 2014; 745, 201-16. doi:  10.1016/j.ejphar.2014.10.044
[9] Plutzky J. PPARs as therapeutic targets:reverse cardiology? Science, 2003; 302, 406-7. doi:  10.1126/science.1091172