[1] Shapiro M, Chung C, Sharashidze V, et al. Venous anatomy of the central nervous system. Neurosurg Clin N Am, 2024; 35, 273−86. doi:  10.1016/j.nec.2024.03.001
[2] Wilson MH, Imray CHE. The cerebral venous system and hypoxia. J Appl Physiol (1985), 2016; 120, 244−50. doi:  10.1152/japplphysiol.00327.2015
[3] Bai CB, Wang Z, Guan JW, et al. Clinical characteristics and neuroimaging findings in eagle syndrome induced internal jugular vein stenosis. Ann Transl Med, 2020; 8, 97. doi:  10.21037/atm.2019.12.93
[4] Zhou D, Ding JY, Asmaro K, et al. Clinical characteristics and neuroimaging findings in internal jugular venous outflow disturbance. Thromb Haemost, 2019; 119, 308−18. doi:  10.1055/s-0038-1676815
[5] Wei HM, Jiang HM, Zhou YF, et al. Cerebral venous congestion alters CNS homeostatic plasticity, evoking tinnitus-like behavior. Cell Biosci, 2024; 14, 47. doi:  10.1186/s13578-024-01221-9
[6] Nyul-Toth A, Fulop GA, Tarantini S, et al. Cerebral venous congestion exacerbates cerebral microhemorrhages in mice. GeroScience, 2022; 44, 805−16. doi:  10.1007/s11357-021-00504-0
[7] Bai CB, Wang ZA, Stone C, et al. Pathogenesis and management in cerebrovenous outflow disorders. Aging Dis, 2021; 12, 203−22. doi:  10.14336/AD.2020.0404
[8] Lan D, Song SY, Jia ML, et al. Cerebral venous-associated brain damage may lead to anxiety and depression. J Clin Med, 2022; 11, 6927. doi:  10.3390/jcm11236927
[9] Wei HM, Jiang HM, Zhou YF, et al. Cerebral venous congestion alters brain metabolite profiles, impairing cognitive function. J Cereb Blood Flow Metab, 2023; 43, 1857−72. doi:  10.1177/0271678X231182244
[10] Bai CB, Chen ZY, Ding YC, et al. Long-term safety and efficacy of stenting on correcting internal jugular vein and cerebral venous sinus stenosis. Ann Clin Transl Neurol, 2023; 10, 1305−13. doi:  10.1002/acn3.51822
[11] Pang S, Kolarich AR, Brinjikji W, et al. Interventional and surgical management of internal jugular venous stenosis: a narrative review. J Neurointerv Surg, 2022; 14, neurintsurg−2021-017937.
[12] Fargen KM, Midtlien JP, Belanger K, et al. The promise, mystery, and perils of stenting for symptomatic internal jugular vein stenosis: a case series. Neurosurgery, 2024; 95, 400−7. doi:  10.1227/neu.0000000000002891
[13] Zhang QH, Zhao WB, Li SJ, et al. Intermittent hypoxia conditioning: a potential multi-organ protective therapeutic strategy. Int J Med Sci, 2023; 20, 1551−61. doi:  10.7150/ijms.86622
[14] Wang Y, Zhang QH, Ma QF, et al. Intermittent hypoxia preconditioning can attenuate acute hypoxic injury after a sustained normobaric hypoxic exposure: a randomized clinical trial. CNS Neurosci Ther, 2024; 30, e14662. doi:  10.1111/cns.14662
[15] Bayer U, Glazachev OS, Likar R, et al. Adaptation to intermittent hypoxia-hyperoxia improves cognitive performance and exercise tolerance in the elderly. Adv Gerontol, 2017; 7, 214−20. doi:  10.1134/S2079057017030031
[16] Bestavashvili A, Glazachev O, Bestavashvili A, et al. Intermittent hypoxic-hyperoxic exposures effects in patients with metabolic syndrome: correction of cardiovascular and metabolic profile. Biomedicines, 2022; 10, 566. doi:  10.3390/biomedicines10030566
[17] Naidu A, Peters DM, Tan AQ, et al. Daily acute intermittent hypoxia to improve walking function in persons with subacute spinal cord injury: a randomized clinical trial study protocol. BMC Neurol, 2020; 20, 273. doi:  10.1186/s12883-020-01851-9
[18] Susta DE, Dudnik E, Glazachev OS. A programme based on repeated hypoxia-hyperoxia exposure and light exercise enhances performance in athletes with overtraining syndrome: a pilot study. Clin Physiol Funct Imaging, 2017; 37, 276−81. doi:  10.1111/cpf.12296
[19] Behrendt T, Bielitzki R, Behrens M, et al. Effects of intermittent hypoxia-hyperoxia exposure prior to aerobic cycling exercise on physical and cognitive performance in geriatric patients-a randomized controlled trial. Front Physiol, 2022; 13, 899096. doi:  10.3389/fphys.2022.899096
[20] Dudnik E, Zagaynaya E, Glazachev OS, et al. Intermittent hypoxia-hyperoxia conditioning improves cardiorespiratory fitness in older comorbid cardiac outpatients without hematological changes: a randomized controlled trial. High Alt Med Biol, 2018; 19, 339−43. doi:  10.1089/ham.2018.0014
[21] Ding JY, Liu Y, Li XY, et al. Normobaric oxygen may ameliorate cerebral venous outflow disturbance-related neurological symptoms. Front Neurol, 2020; 11, 599985. doi:  10.3389/fneur.2020.599985
[22] Wille M, Gatterer H, Mairer K, et al. Short-term intermittent hypoxia reduces the severity of acute mountain sickness. Scand J Med Sci Sports, 2012; 22, e79−e85.
[23] Guan YY, Gu YK, Shao HT, et al. Intermittent hypoxia protects against hypoxic-ischemic brain damage by inducing functional angiogenesis. J Cereb Blood Flow Metab, 2023; 43, 1656−71. doi:  10.1177/0271678X231185507
[24] Guan YY, Liu J, Gu YK, et al. Effects of hypoxia on cerebral microvascular angiogenesis: benefits or damages?. Aging Dis, 2023; 14, 370−85.
[25] Wakhloo D, Scharkowski F, Curto Y, et al. Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin. Nat Commun, 2020; 11, 1313. doi:  10.1038/s41467-020-15041-1
[26] Panza GS, Puri S, Lin HS, et al. Daily exposure to mild intermittent hypoxia reduces blood pressure in male patients with obstructive sleep apnea and hypertension. Am J Respir Crit Care Med, 2022; 205, 949−58. doi:  10.1164/rccm.202108-1808OC
[27] Wang Y, Zhang QH, Ma QF, et al. Effects of normobaric intermittent hypoxia at moderate hypoxia level on physiological responses in healthy subjects: a pilot study. Cond Med, 2023; 6, 4−10.
[28] Guo WT, Zhao WB, Li D, et al. Chronic remote ischemic conditioning on mild hypertension in the absence of antihypertensive medication: a multicenter, randomized, double-blind, proof-of-concept clinical trial. Hypertension, 2023; 80, 1274−82. doi:  10.1161/HYPERTENSIONAHA.122.20934
[29] Jia LY, Hua Y, Ji XM, et al. Correlation analysis of internal jugular vein abnormalities and cerebral venous sinus thrombosis. Chin Med J (Engl), 2012; 125, 3671−4.
[30] Yan CM, Yu F, Zhang YJ, et al. Multidelay arterial spin labeling versus computed tomography perfusion in penumbra volume of acute ischemic stroke. Stroke, 2023; 54, 1037−45. doi:  10.1161/STROKEAHA.122.040759
[31] Behrendt T, Bielitzki R, Behrens M, et al. Effects of intermittent hypoxia-hyperoxia on performance- and health-related outcomes in humans: a systematic review. Sports Med Open, 2022; 8, 70. doi:  10.1186/s40798-022-00450-x
[32] Burtscher M, Wille M, Menz V, et al. Symptom progression in acute mountain sickness during a 12-hour exposure to normobaric hypoxia equivalent to 4500 m. High Alt Med Biol, 2014; 15, 446−51. doi:  10.1089/ham.2014.1039
[33] Gatterer H, Villafuerte FC, Ulrich S, et al. Altitude illnesses. Nat Rev Dis Primers, 2024; 10, 43. doi:  10.1038/s41572-024-00526-w
[34] Behrendt T, Altorjay AC, Bielitzki R, et al. Influence of acute and chronic intermittent hypoxic-hyperoxic exposure prior to aerobic exercise on cardiovascular risk factors in geriatric patients-a randomized controlled trial. Front Physiol, 2022; 13, 1043536. doi:  10.3389/fphys.2022.1043536
[35] Bestavashvili A, Glazachev O, Ibragimova S, et al. Impact of hypoxia-hyperoxia exposures on cardiometabolic risk factors and TMAO levels in patients with metabolic syndrome. Int J Mol Sci, 2023; 24, 14498. doi:  10.3390/ijms241914498
[36] Harki O, Boete Q, Pépin JL, et al. Intermittent hypoxia-related alterations in vascular structure and function: a systematic review and meta-analysis of rodent data. Eur Respir J, 2022; 59, 2100866. doi:  10.1183/13993003.00866-2021
[37] Liu XL, Chen XA, Kline G, et al. Reduced cerebrovascular and cardioventilatory responses to intermittent hypoxia in elderly. Respir Physiol Neurobiol, 2020; 271, 103306. doi:  10.1016/j.resp.2019.103306
[38] Goulet N, Marcoux C, Bourgon V, et al. Biological sex-related differences in the postprandial triglyceride response to intermittent hypoxaemia in young adults: a randomized crossover trial. J Physiol, 2024; 602, 5817−34. doi:  10.1113/JP285430
[39] Morin R, Mauger JF, Amaratunga R, et al. The effect of acute intermittent hypoxia on postprandial triglyceride levels in humans: a randomized crossover trial. J Transl Med, 2021; 19, 268. doi:  10.1186/s12967-021-02933-z
[40] Drager LF, Li J, Shin MK, et al. Intermittent hypoxia inhibits clearance of triglyceride-rich lipoproteins and inactivates adipose lipoprotein lipase in a mouse model of sleep apnoea. Eur Heart J, 2012; 33, 783−90. doi:  10.1093/eurheartj/ehr097
[41] Gunduz C, Basoglu OK, Hedner J, et al. Hyperlipidaemia prevalence and cholesterol control in obstructive sleep apnoea: data from the European sleep apnea database (ESADA). J Intern Med, 2019; 286, 676−88. doi:  10.1111/joim.12952
[42] Jiao XQ, Liu MQ, Li R, et al. Helpful to live healthier? Intermittent hypoxic/ischemic training benefits vascular homeostasis and lipid metabolism with activating SIRT1 pathways in overweight/obese individuals. Obes Facts, 2024; 17, 131−44. doi:  10.1159/000536093
[43] Manferdelli G, Marzorati M, Easton C, et al. Changes in prefrontal cerebral oxygenation and microvascular blood volume in hypoxia and possible association with acute mountain sickness. Exp Physiol, 2021; 106, 76−85. doi:  10.1113/EP088515
[44] Xie JX, Xie SW, Zhong ZF, et al. Hypoxic preacclimatization combining intermittent hypoxia exposure with physical exercise significantly promotes the tolerance to acute hypoxia. Front Physiol, 2024; 15, 1367642. doi:  10.3389/fphys.2024.1367642
[45] Brocherie F, Millet GP, D’hulst G, et al. Repeated maximal-intensity hypoxic exercise superimposed to hypoxic residence boosts skeletal muscle transcriptional responses in elite team-sport athletes. Acta Physiol, 2018; 222, e12851. doi:  10.1111/apha.12851
[46] Bertuglia S. Intermittent hypoxia modulates nitric oxide-dependent vasodilation and capillary perfusion during ischemia-reperfusion-induced damage. Am J Physiol Heart Circ Physiol, 2008; 294, H1914−22. doi:  10.1152/ajpheart.01371.2007
[47] Wang H, Shi XR, Schenck H, et al. Intermittent hypoxia training for treating mild cognitive impairment: a pilot study. Am J Alzheimers Dis Other Demen, 2020; 35, 1533317519896725.
[48] Boulares A, Pichon A, Faucher C, et al. Effects of intermittent hypoxia protocols on cognitive performance and brain health in older adults across cognitive states: a systematic literature review. J Alzheimers Dis, 2024; 101, 13−30. doi:  10.3233/JAD-240711
[49] Liu XL, Xu DQ, Hall JR, et al. Enhanced cerebral perfusion during brief exposures to cyclic intermittent hypoxemia. J Appl Physiol (1985), 2017; 123, 1689−97. doi:  10.1152/japplphysiol.00647.2017
[50] Tobin B, Costalat G, Renshaw G M C. Pre-acclimation to altitude in young adults: choosing a hypoxic pattern at sea level which provokes significant haematological adaptations. Eur J Appl Physiol, 2022; 122, 395−407. doi:  10.1007/s00421-021-04837-8
[51] Zhang GB, Zhou YZ, Cao ZT, et al. Preliminary intermittent hypoxia training alleviates the damage of sustained normobaric hypoxia on human hematological indexes and cerebral white matter. High Alt Med Biol, 2022; 23, 273−83.
[52] Baranauskas MN, Fulton TJ, Fly AD, et al. High intraindividual variability in the response of serum erythropoietin to multiple simulated altitude exposures. High Alt Med Biol, 2022; 23, 85−9. doi:  10.1089/ham.2021.0154
[53] Mardyła M, Maciejczyk M, Pałka T, et al. Intermittent hypoxia training does not change erythrocyte aggregation indicators in young, healthy men. Front Physiol, 2024; 15, 1386650. doi:  10.3389/fphys.2024.1386650