[1] Eggimann P, Garbino J, Pittet D, et al. Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis, 2003; 3, 685-702. doi:  10.1016/S1473-3099(03)00801-6
[2] Lass-Floerl C. The changing face of epidemiology of invasive fungal disease in Europe. Mycoses, 2009; 52, 197-205. doi:  10.1111/myc.2009.52.issue-3
[3] Wilson D, Naglik JR, Hube B, et al. The missing link between Candida albicans hyphal morphogenesis and host cell damage. PLoS Pathog, 2016; 12, e1005867. doi:  10.1371/journal.ppat.1005867
[4] Consolaro MEL, Albertoni TA, Svidzinski AE, et al. Vulvovaginal candidiasis is associated with the production of germ tubes by Candida albicans. Mycopathologia, 2005; 159, 501-7. doi:  10.1007/s11046-005-1149-0
[5] Chaffin WL, Lopez-Ribot JL, Casanova M, et al. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microb Mol Biol Rev, 1998; 62, 130-80. http://pubmedcentralcanada.ca/pmcc/articles/PMC98909/
[6] Kruppa M. Quorum sensing and Candida albicans. Mycoses, 2009; 52, 1-10. http://d.old.wanfangdata.com.cn/Periodical/spaqzljcjs201703022
[7] Nikawa H, Egusa H, Makihira S, et al. An in vitro evaluation of the adhesion of Candida species to oral and lung tissue cells. Mycoses, 2006; 49, 14-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3bba96c7c5658a007611dec0cd51161d
[8] Mayer FL, Wilson D, Hube B, et al. Candida albicans pathogenicity mechanisms. Virulence, 2013; 4, 119-28. doi:  10.4161/viru.22913
[9] Munro CA, Bates S, Buurman ET, et al. Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1, 2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem, 2005; 280, 1051-60. doi:  10.1074/jbc.M411413200
[10] Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol, 2001; 9, 327-35. doi:  10.1016/S0966-842X(01)02094-7
[11] Tian J, Weng LX, Zhang YQ, et al. BDSF inhibits Candida albicans adherence to urinary catheters. Microb Pathog, 2013; 64, 33-8. doi:  10.1016/j.micpath.2013.07.003
[12] Murciano C, Moyes DL, Runglall M, et al. Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PLoS One, 2012; 7, e33362. doi:  10.1371/journal.pone.0033362
[13] Moyes DL, Wilson D, Richardson JP, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature, 2016; 532, 64-8. doi:  10.1038/nature17625
[14] Theiss S, Ishdorj G, Brenot A, et al. Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence. Int J Med Microbiol, 2006; 296, 405-20. doi:  10.1016/j.ijmm.2006.03.003
[15] Fu Y, Ibrahim AS, Fonzi W, et al. Cloning and characterization of a gene (LIP1) which encodes a lipase from the pathogenic yeast Candida albicans. Microbiology, 1997; 143 (Pt2), 331-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=64be4ed0f6700f33eb3ce8739b88bb6e
[16] Schaller M, Borelli C, Korting HC, et al. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses, 2005; 48, 365-77. doi:  10.1111/myc.2005.48.issue-6
[17] Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Micro, 2011; 9, 737-48. doi:  10.1038/nrmicro2636
[18] Wachtler B, Citiulo F, Jablonowski N, et al. Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS One, 2012; 7, e36952. doi:  10.1371/journal.pone.0036952
[19] Phan QT, Myers CL, Fu Y, et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol, 2007; 5, e64. doi:  10.1371/journal.pbio.0050064
[20] Khosravi AR, Shokri H, Nikaein D, et al. Yeasts as important agents of onychomycosis: In vitro activity of propolis against yeasts isolated from patients with nail infection. J Altern Complem Med, 2013; 19, 57-62. doi:  10.1089/acm.2011.0722
[21] Masood A, Faisal S, Haque W, et al. Immunomodulator tuftsin augments anti-fungal activity of amphotericin B against experimental murine candidiasis. J Drug Target, 2002; 10, 185-92. doi:  10.1080/10611860290022615
[22] Khan MA, Khan A, Owais M, et al. Prophylactic use of liposomized tuftsin enhances the susceptibility of Candida albicans to fluconazole in leukopenic mice. FEMS Immun Med Microbiol, 2005; 46, 63-9. http://europepmc.org/abstract/MED/16420598
[23] De Bernardis F, Liu H, O'Mahony R, et al. Human domain antibodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis. J Infect Dis, 2007; 195, 149-57. doi:  10.1086/jid.2007.195.issue-1
[24] De Bernardis F, Arancia S, Tringali G, et al. Evaluation of efficacy, pharmacokinetics and tolerability of peptidomimetic aspartic proteinase inhibitors as cream formulation in experimental vaginal candidiasis. J Pharm Pharmacol, 2014; 66, 1094-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd1a38426d6d8bd6b227cceefa4611b8
[25] Hisajima T, Maruyama N, Tanabe Y, et al. Protective effects of farnesol against oral candidiasis in mice. Microbiol Immunol, 2008; 52, 327-33. doi:  10.1111/mim.2008.52.issue-7
[26] Arendrup MC. Epidemiology of invasive candidiasis. Curr Opin Crit Care, 2010; 16, 445-52. doi:  10.1097/MCC.0b013e32833e84d2
[27] Boon C, Deng Y, Wang L, et al. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J, 2007; 2, 27-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a700f6389186779e928cff2f7d66ab20
[28] Zhang Y, Cai C, Yang Y, et al. Blocking of Candida albicans biofilm formation by cis-2-dodecenoic acid and trans-2-dodecenoic acid. J Med Microbiol, 2011; 60, 1643-50. doi:  10.1099/jmm.0.029058-0
[29] Price MF, Wilkinson ID, Gentry LO, et al. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia, 1982; 20, 7-14. doi:  10.1080/00362178285380031
[30] Wang L, Zhang L. Inhibitors of yeast filamentous growth and method of their manufacture. United State Patent No.8748486. http://www.researchgate.net/publication/302745045_Inhibitors_of_yeast_filamentous_growth_and_method_of_their_manufacture
[31] Galgiani JN. Susceptibility of Candida albicans and other yeasts to fluconazole: relation between in vitro and in vivo studies. Rev Infec Dis, 1990; 12, S272-S5. doi:  10.1093/clinids/12.Supplement_3.S272
[32] Park H, Myers CL, Sheppard DC, et al. Role of the fungal Ras-protein kinase a pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell Microbiol, 2005; 7, 499-510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2c0ba8f74698bab70e3314b4ea8ec536
[33] Wächtler B, Wilson D, Hube B, et al. Candida albicans adhesion to and invasion and damage of vaginal epithelial cells: stage-specific inhibition by clotrimazole and bifonazole. Antimicrob Agents Chemother, 2011; 55, 4436-9. doi:  10.1128/AAC.00144-11
[34] Hamad M, Muta'eb E, Abu‐Shaqra Q, et al. Utility of the oestrogen-dependent vaginal candidosis murine model in evaluating the efficacy of various therapies against vaginal Candida albicans infection. Mycoses, 2006; 49, 104-8. doi:  10.1111/myc.2006.49.issue-2
[35] González GM, Portillo OJ, Uscanga GI, et al. Therapeutic efficacy of voriconazole against a fluconazole-resistant Candida albicans isolate in a vaginal model. J Antimicrob Chemoth, 2009; 64, 571-3. doi:  10.1093/jac/dkp228
[36] Gill N, Rosenthal KL, Ashkar AA, et al. NK and NKT cell-independent contribution of interleukin-15 to innate protection against mucosal viral infection. J Virol, 2005; 79, 4470-8. doi:  10.1128/JVI.79.7.4470-4478.2005
[37] Dalle F, Wächtler B, L'Ollivier C, et al. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol, 2010; 12, 248-71. doi:  10.1111/cmi.2010.12.issue-2
[38] Zheng H, Yu YS. TOP2 gene is involved in the pathogenicity of Candida albicans. Mol Cell Biochem, 2012; 364, 45-52. doi:  10.1007/s11010-011-1203-9
[39] Kovachev SM, Vatcheva-Dobrevska RS. Local probiotic therapy for vaginal Candida albicans infections. Probiotics antimicro, 2015; 7, 38-44. doi:  10.1007/s12602-014-9176-0
[40] Newman SL, Holly A. Candida albicans is phagocytosed, killed, and processed for antigen presentation by human dendritic cells. Infect Immun, 2001; 69, 6813-22. doi:  10.1128/IAI.69.11.6813-6822.2001
[41] Poyart C, Pellegrini E, Gaillot O, et al. Contribution of Mn-cofactored superoxide dismutase (SODA) to the virulence of Streptococcus agalactiae. Infect immun, 2001; 69, 5098-106. doi:  10.1128/IAI.69.8.5098-5106.2001
[42] Guo N, Wu S, Shen Y, et al. Protective effect of glycyrrhizine in mice with systemic Candida albicans infection and its mechanism. Acta Academiae Medicinae Sinicae, 1991; 13, 380-3. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004132202
[43] Saavedra M, Taylor B, Lukacs N, et al. Local production of chemokines during experimental vaginal candidiasis. Infect Immun, 1999; 67, 5820-6. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_96961
[44] Chen R, Fɑn Y, Lin Y, et al. Expression of IGFBP-3 and caspase-3 in murine vaginal mucosa with experimental candidiasis. J Guangdong Medical, 2009; 5. (In Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyxyxb200905004
[45] Zheng CJ, Yoo J-S, Lee T-G, et al. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett, 2005; 579, 5157-62. doi:  10.1016/j.febslet.2005.08.028
[46] Laskar K, Faisal SM, Rauf A, et al. Undec-10-enoic acid functionalized chitosan based novel nano-conjugate: An enhanced anti-bacterial/biofilm and anti-cancer potential. Carbohydr Polym, 2017; 166, 14-23. doi:  10.1016/j.carbpol.2017.02.082
[47] Khan AA, Alam M, Tufail S, et al. Synthesis and characterization of novel PUFA esters exhibiting potential anticancer activities: an in vitro study. Eur J Med Chem, 2011; 46, 4878-86. doi:  10.1016/j.ejmech.2011.07.044
[48] Ahmad N, Alam M, Shehbaz A, et al. Antimicrobial activity of clove oil and its potential in the treatment of vaginal candidiasis. J Drug Target, 2005; 13, 555-61. doi:  10.1080/10611860500422958
[49] Clement M, Tremblay J, Lange M, et al. Whey-derived free fatty acids suppress the germination of Candida albicans in vitro. FEMS Yeast Res, 2007; 7, 276-85. doi:  10.1111/fyr.2007.7.issue-2
[50] Noverr MC, Huffnagle GB. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun, 2004; 72, 6206-10. doi:  10.1128/IAI.72.11.6206-6210.2004
[51] McLain N, Ascanio R, Baker C, et al. Undecylenic acid inhibits morphogenesis of Candida albicans. Antimicrob Agents Chemother, 2000; 44, 2873-5. doi:  10.1128/AAC.44.10.2873-2875.2000
[52] Goncalves LM, Del Bel Cury AA, Sartoratto A, et al. Effects of undecylenic acid released from denture liner on Candida biofilms. J Dent Res, 2012; 91, 985-9. doi:  10.1177/0022034512458689
[53] Oh KB, Miyazawa H, Naito T, et al. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc Natl Acad Sci U S A, 2001; 98, 4664-8. doi:  10.1073/pnas.071404698
[54] K Weber BSaMR. The quorum-sensing molecule E, E-farnesol-ts variable secretion and its impact on the growth and metabolism of Candida species. Yeast, 2010; 27, 727-39. doi:  10.1002/yea.1769
[55] Lo HJ, Köhler JR, DiDomenico B, et al. Nonfilamentous C. albicans mutants are avirulent. Cell, 1997; 90, 939-49. doi:  10.1016/S0092-8674(00)80358-X
[56] Ghannoum MA, Filler SG, Ibrahim AS, et al. Modulation of interactions of Candida albicans and endothelial cells by fluconazole and amphotericin B. Antimicrob Agents Chemother, 1992; 36, 2239-44. doi:  10.1128/AAC.36.10.2239
[57] Filler SG, Swerdloff JN, Hobbs C, et al. Penetration and damage of endothelial cells by Candida albicans. Infect Immun, 1995; 63, 976-83. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_173098
[58] Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev, 2000; 13, 122-43. doi:  10.1128/CMR.13.1.122
[59] Souza JL, da Silva AF, Carvalho PH, et al. Aliphatic fatty acids and esters: inhibition of growth and exoenzyme production of Candida, and their cytotoxicity in vitro: anti-Candida effect and cytotoxicity of fatty acids and esters. Arch Oral Biol, 2014; 59, 880-6. doi:  10.1016/j.archoralbio.2014.05.017