[1] M Mesnil, T Aasen, J Boucher, A, et al. An update on minding the gap in cancer. Biochim Biophys Acta, 2018; 1860, 237−43. doi:  10.1016/j.bbamem.2017.06.015
[2] RL Siegel, KD Miller, and A Jemal. Cancer Statistics, 2017. CA Cancer J Clin, 2017; 67, 7−30. doi:  10.3322/caac.21387
[3] ST Chang, CO Menias, MG Lubner, et al. Molecular and Clinical Approach to Intra-abdominal Adverse Effects of Targeted Cancer Therapies. Radiographics, 2017; 1, 160−2.
[4] JM Argiles, FJ Lopez-Soriano, B Stemmler, et al. Novel targeted therapies for cancer cachexia. Biochem J, 2017; 474, 2663−78. doi:  10.1042/BCJ20170032
[5] V MacDonald. Chemotherapy: managing side effects and safe handling. Can Vet J, 2009; 50, 665−8.
[6] A Roohi, M Hojjat-Farsangi. Recent advances in targeting mTOR signaling pathway using small molecule inhibitors. J Drug Target, 2017; 25, 189−201. doi:  10.1080/1061186X.2016.1236112
[7] M Hojjat-Farsangi. Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies. Int J Mol Sci, 2014; 15, 13768−801. doi:  10.3390/ijms150813768
[8] GN Li, SP Wang, X Xue, et al. Monoclonal antibody-related drugs for cancer therapy. Drug Discov Ther, 2013; 7, 178−84.
[9] DH Chen, XS Zhang. Targeted therapy: resistance and re-sensitization. Chin J Cancer, 2015; 34, 496−501.
[10] C Biswas, Y Zhang, R DeCastro, et al. The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res, 1995; 55, 434−9.
[11] Y Li, J Xu, L Chen, et al. HAb18G (CD147), a cancer-associated biomarker and its role in cancer detection. Histopathology, 2009; 54, 677−87. doi:  10.1111/his.2009.54.issue-6
[12] YL Yong, CG Liao, D Wei, et al. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells. Cell Biol Int, 2016; 40, 375−86. doi:  10.1002/cbin.v40.4
[13] T Muramatsu. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem, 2015; 195, 481−90.
[14] L Xiong, C Edwards, L Zhou. The Biological Function and Clinical Utilization of CD147 in Human Diseases: A Review of the Current Scientific Literature. Int J Mol Sci, 2014; 15, 17411−41. doi:  10.3390/ijms151017411
[15] X Xu, S Liu, B Lei, et al. Expression of HAb18G in non-small lung cancer and characterization of activation, migration, proliferation, and apoptosis in A549 cells following siRNA-induced downregulation of HAb18G. Mol Cell Biochem, 2013; 383, 1−11. doi:  10.1007/s11010-013-1722-7
[16] I Marchiq, J Albrengues, S Granja, et al. Knock out of the BASIGIN/CD147 chaperone of lactate/H+ symporters disproves its pro-tumour action via extracellular matrix metalloproteases (MMPs) induction. Oncotarget, 2015; 6, 24636−48.
[17] ZG Fu, L Wang, HY Cui, et al. A novel small-molecule compound targeting CD147 inhibits the motility and invasion of hepatocellular carcinoma cells. Oncotarget, 2016; 7, 9429−47.
[18] J Xu, HY Xu, Q Zhang, et al. HAb18G/CD147 functions in invasion and metastasis of hepatocellular carcinoma. Mol Cancer Res, 2007; 5, 605−14. doi:  10.1158/1541-7786.MCR-06-0286
[19] P Zhao, W Zhang, SJ Wang, et al. HAb18G/CD147 promotes cell motility by regulating annexin II-activated RhoA and Rac1 signaling pathways in hepatocellular carcinoma cells. Hepatology, 2011; 54, 2012−24. doi:  10.1002/hep.24592
[20] F Fei, X Li, L Xu, et al. CD147-CD98hc complex contributes to poor prognosis of non-small cell lung cancer patients through promoting cell proliferation via the PI3K/Akt signaling pathway. Ann Surg Oncol, 2014; 21, 4359−68. doi:  10.1245/s10434-014-3816-1
[21] Maldonado-Baez L, Donaldson JG. Hook1, microtubules, and Rab22: mediators of selective sorting of clathrin-independent endocytic cargo proteins on endosomes. Bioarchitecture, 2013; 3, 141−6. doi:  10.4161/bioa.26638
[22] Pereira-Vieira J, Azevedo-Silva J, Preto A, et al. MCT1, MCT4 and CD147 expression and 3-bromopyruvate toxicity in colorectal cancer cells are modulated by the extracellular conditions. Biol Chem, 2019; 400, 787−99. doi:  10.1515/hsz-2018-0411
[23] Zhang MY, Zhang Y, Wu XD, et al. Disrupting CD147-RAP2 interaction abrogates erythrocyte invasion by Plasmodium falciparum. Blood, 2018; 131, 1111−21. doi:  10.1182/blood-2017-08-802918
[24] Li L, Tang W, Wu X, et al. HAb18G/CD147 promotes pSTAT3-mediated pancreatic cancer development via CD44s. Clin Cancer Res, 2013; 19, 6703−15. doi:  10.1158/1078-0432.CCR-13-0621
[25] Grass GD, Tolliver LB, Bratoeva M, et al. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness. J Biol Chem, 2013; 288, 26089−104. doi:  10.1074/jbc.M113.497685
[26] Kondo R, Ishino K, Wada R, et al. Downregulation of protein disulfideisomerase A3 expression inhibits cell proliferation and induces apoptosis through STAT3 signaling in hepatocellular carcinoma. Int J Oncol, 2019; 54,1409-21. doi:  10.3892/ijo.2019.4710
[27] D Hanahan, RA Weinberg. Hallmarks of cancer: the next generation. Cell, 2011; 144, 646−74. doi:  10.1016/j.cell.2011.02.013
[28] ZY Tang, L Ye, YK Liu, et al. A decade's studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol, 2004; 130, 187−96. doi:  10.1007/s00432-003-0511-1
[29] Sun J, Hemler ME. Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res, 2001; 5, 2276−81.
[30] J Tang, HW Zhou, JL Jiang, et al. BetaIg-h3 is involved in the HAb18G/CD147-mediated metastasis process in human hepatoma cells. Exp Biol Med (Maywood), 2007; 232, 344−52.
[31] Y Wang, L Yuan, XM Yang, et al. A chimeric antibody targeting CD147 inhibits hepatocellular carcinoma cell motility via FAK-PI3K-Akt-Girdin signaling pathway. Clin Exp Metastasis, 2015; 32, 39−53. doi:  10.1007/s10585-014-9689-7
[32] SJ Wang, HY Cui, YM Liu, et al. CD147 promotes Src-dependent activation of Rac1 signaling through STAT3/DOCK8 during the motility of hepatocellular carcinoma cells. Oncotarget, 2015; 6, 243−57.
[33] HY Cui, T Guo, SJ Wang, et al. Dimerization is essential for HAb18G/CD147 promoting tumor invasion via MAPK pathway. Biochem Biophys Res Commun, 2012; 419, 517−22. doi:  10.1016/j.bbrc.2012.02.049
[34] V Miranda-Goncalves, M Honavar, C Pinheiro O, et al. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro Oncol, 2013; 15, 172−88. doi:  10.1093/neuonc/nos298
[35] Z Zhang, Y Zhang, Q Sun, et al. Preclinical pharmacokinetics, tolerability, and pharmacodynamics of metuzumab, a novel CD147 human-mouse chimeric and glycoengineered antibody. Mol Cancer Ther, 2015; 14, 162−73.
[36] F Feng, B Wang, X Sun, et al. Metuzumab enhanced chemosensitivity and apoptosis in non-small cell lung carcinoma. Cancer Biol Ther, 2017; 18, 51−62. doi:  10.1080/15384047.2016.1276126
[37] H Davies, GR Bignell, C Cox, et al. Mutations of the BRAF gene in human cancer. Nature, 2002; 417, 949−54. doi:  10.1038/nature00766
[38] MS Kinch, D Hoyer, E Patridge, et al. Target selection for FDA-approved medicines. Drug Discov Today, 2015; 20, 784−9. doi:  10.1016/j.drudis.2014.11.001
[39] JC Hertzman, BS Egyhazi. BRAF inhibitors in cancer therapy. Pharmacol Ther, 2014; 142, 176−82. doi:  10.1016/j.pharmthera.2013.11.011
[40] I Okamoto. Epidermal growth factor receptor in relation to tumor development: EGFR-targeted anticancer therapy. FEBS J, 2010; 277, 309−15. doi:  10.1111/j.1742-4658.2009.07449.x
[41] RJ Roskoski. A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol Res, 2015; 100, 1−23. doi:  10.1016/j.phrs.2015.07.010
[42] M MacFarlane, AC Williams. Apoptosis and disease: a life or death decision. EMBO Rep, 2004; 5, 674−8. doi:  10.1038/sj.embor.7400191
[43] A Talaiezadeh, F Jalali, H Galehdari, et al. Time depended Bcl-2 inhibition might be useful for a targeted drug therapy. Cancer Cell Int, 2015; 15, 105. doi:  10.1186/s12935-015-0254-5
[44] CK Kontos, MI Christodoulou, A Scorilas. Apoptosis-related BCL2-family members: Key players in chemotherapy. Anticancer Agents Med Chem, 2014; 14, 353−74. doi:  10.2174/18715206113139990091
[45] A Kamal, S Faazil, MS Malik. Apoptosis-inducing agents: a patent review (2010- 2013). Expert Opin Ther Pat, 2014; 24, 339−54. doi:  10.1517/13543776.2014.877445
[46] Pieper AA, Verma A, Zhang J, et al. Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol. Sci, 1999; 4, 171−81.
[47] Li kou, Young cheun, Myong Chul Koag. Synthesis of 14′, 15′-dehydro-ritterazine Y via reductive and oxidative functionalizations of hecogenin acetate. Steroids, 2013; 78, 304−11. doi:  10.1016/j.steroids.2012.10.021
[48] Li Kou, Seongmin Lee. Unexpected opening of steroidal E-ring during hypoiodite-mediated oxidation. Tetrahedron Letters, 2013; 54, 4106−9. doi:  10.1016/j.tetlet.2013.05.115