[1] |
Chen NS, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020; 395, 507−13. doi: 10.1016/S0140-6736(20)30211-7 |
[2] |
Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol, 2020; 5, 428−30. doi: 10.1016/S2468-1253(20)30057-1 |
[3] |
Ronco C, Reis T, Husain-Syed F. Management of acute kidney injury in patients with COVID-19. Lancet Respir Med, 2020; 8, 738−42. doi: 10.1016/S2213-2600(20)30229-0 |
[4] |
Akhmerov A, Marbán E. COVID-19 and the heart. Circ Res, 2020; 126, 1443−55. doi: 10.1161/CIRCRESAHA.120.317055 |
[5] |
Stein SR, Ramelli SC, Grazioli A, et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature, 2022; 612, 758−63. doi: 10.1038/s41586-022-05542-y |
[6] |
Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Eng J Med, 2020; 382, 2268−70. doi: 10.1056/NEJMc2008597 |
[7] |
Huang YH, Jiang D, Huang JT. SARS-CoV-2 detected in cerebrospinal fluid by PCR in a case of COVID-19 encephalitis. Brain Behav Immun, 2020; 87, 149. doi: 10.1016/j.bbi.2020.05.012 |
[8] |
Huang CL, Wang YM, Li XW, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020; 395, 497−506. doi: 10.1016/S0140-6736(20)30183-5 |
[9] |
Jackson CB, Farzan M, Chen B, et al. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol, 2022; 23, 3−20. |
[10] |
McCray Jr PB, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol, 2007; 81, 813−21. doi: 10.1128/JVI.02012-06 |
[11] |
Kumari P, Rothan HA, Natekar JP, et al. Neuroinvasion and encephalitis following intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice. Viruses, 2021; 13, 132. doi: 10.3390/v13010132 |
[12] |
Akkız H. The biological functions and clinical significance of SARS-CoV-2 variants of corcern. Front Med, 2022; 9, 849217. doi: 10.3389/fmed.2022.849217 |
[13] |
Sarkar M, Madabhavi I. SARS-CoV-2 variants of concern: a review. Monaldi Arch Chest Dis, 2022; 93. |
[14] |
Tarrés-Freixas F, Trinité B, Pons-Grífols A, et al. Heterogeneous infectivity and pathogenesis of SARS-CoV-2 variants beta, delta and omicron in transgenic K18-hACE2 and wildtype mice. Front Microbiol, 2022; 13, 840757. doi: 10.3389/fmicb.2022.840757 |
[15] |
Zhang GQ, Wu CC, Huang BY, et al. Transcriptomic analysis of lung tissue in C57BL/6 mice infected with beta variant of SARS-CoV-2 and experimental validation of chemokines. Chin J Virol, 2024; 40, 255−65. (In Chinese) |
[16] |
Roth R, Madhani HD, Garcia JF. Total RNA isolation and quantification of specific RNAs in fission yeast. Methods Mol Biol, 2018; 1721, 63−72. |
[17] |
Kim D, Paggi JM, Park C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019; 37, 907−15. doi: 10.1038/s41587-019-0201-4 |
[18] |
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014; 30, 923−30. doi: 10.1093/bioinformatics/btt656 |
[19] |
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014; 15, 550. doi: 10.1186/s13059-014-0550-8 |
[20] |
Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol, 2020; 21, 678−95. doi: 10.1038/s41580-020-0270-8 |
[21] |
Yuan JY, Ofengeim D. A guide to cell death pathways. Nat Rev Mol Cell Biol, 2024; 25, 379−95. doi: 10.1038/s41580-023-00689-6 |
[22] |
Bauer L, van Riel D. Do SARS-CoV-2 variants differ in their neuropathogenicity? mBio, 2023; 14, e02920-22. |
[23] |
Yang AC, Kern F, Losada PM, et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature, 2021; 595, 565−71. doi: 10.1038/s41586-021-03710-0 |
[24] |
Song E, Zhang C, Israelow B, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med, 2021; 218, e20202135. doi: 10.1084/jem.20202135 |
[25] |
Du TF, Gao CC, Lu SY, et al. Differential transcriptomic landscapes of SARS-CoV-2 variants in multiple organs from infected rhesus macaques. Genomics Proteomics Bioinformatics, 2023; 21, 1014−29. doi: 10.1016/j.gpb.2023.06.002 |
[26] |
Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect, 2020; 9, 761−70. doi: 10.1080/22221751.2020.1747363 |
[27] |
Gudowska-Sawczuk M, Mroczko B. What is currently known about the role of CXCL10 in SARS-CoV-2 infection? Int J Mol Sci, 2022; 23, 3673. |
[28] |
Zhou XC, Jiang WB, Liu ZS, et al. Virus infection and death receptor-mediated apoptosis. Viruses, 2017; 9, 316. doi: 10.3390/v9110316 |
[29] |
Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature, 2020; 584, 463−9. doi: 10.1038/s41586-020-2588-y |
[30] |
Rothan HA, Kumari P, Stone S, et al. SARS-CoV-2 infects primary neurons from human ACE2 expressing mice and upregulates genes involved in the inflammatory and necroptotic pathways. Pathogens, 2022; 11, 257. doi: 10.3390/pathogens11020257 |
[31] |
Kajiwara Y, Schiff T, Voloudakis G, et al. A critical role for human caspase-4 in endotoxin sensitivity. J Immunol, 2014; 193, 335−43. doi: 10.4049/jimmunol.1303424 |
[32] |
Shi JJ, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015; 526, 660−5. doi: 10.1038/nature15514 |
[33] |
Shi JJ, Zhao Y, Wang YP, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014; 514, 187−92. doi: 10.1038/nature13683 |
[34] |
Schmid-Burgk JL, Gaidt MM, Schmidt T, et al. Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells. Eur J Immunol, 2015; 45, 2911−7. doi: 10.1002/eji.201545523 |
[35] |
Rodrigues TS, Caetano CCS, de Sá KSG, et al. CASP4/11 contributes to NLRP3 activation and COVID-19 exacerbation. J Infect Dis, 2023; 227, 1364−75. doi: 10.1093/infdis/jiad037 |
[36] |
Eltobgy MM, Zani A, Kenney AD, et al. Caspase-4/11 exacerbates disease severity in SARS-CoV-2 infection by promoting inflammation and immunothrombosis. Proc Natl Acad Sci USA, 2022; 119, e2202012119. doi: 10.1073/pnas.2202012119 |
[37] |
Villadiego J, García-Arriaza J, Ramírez-Lorca R, et al. Full protection from SARS-CoV-2 brain infection and damage in susceptible transgenic mice conferred by MVA-CoV2-S vaccine candidate. Nat Neurosci, 2023; 26, 226−38. doi: 10.1038/s41593-022-01242-y |
[38] |
Theoharides TC, Kempuraj D. Role of SARS-CoV-2 spike-protein-induced activation of microglia and mast cells in the pathogenesis of neuro-COVID. Cells, 2023; 12, 688. doi: 10.3390/cells12050688 |
[39] |
Jacob F, Pather SR, Huang WK, et al. Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell, 2020; 27, 937-50. e9. |
[40] |
Suk K. Lipocalin-2 as a therapeutic target for brain injury: an astrocentric perspective. Prog Neurobiol, 2016; 144, 158−72. doi: 10.1016/j.pneurobio.2016.08.001 |
[41] |
Lee S, Lee J, Kim S, et al. A dual role of lipocalin 2 in the apoptosis and deramification of activated microglia. J Immunol, 2007; 179, 3231−41. doi: 10.4049/jimmunol.179.5.3231 |
[42] |
Bi FF, Huang C, Tong JB, et al. Reactive astrocytes secrete lcn2 to promote neuron death. Proc Natl Acad Sci USA, 2013; 110, 4069−74. doi: 10.1073/pnas.1218497110 |
[43] |
Zhang JJ, Shen Y, Sun Y, et al. SARS-CoV-2 infection risk factors in Beijing during November 2022: a case control study. Biomed Environ Sci, 2023; 36, 1100−4. |
[44] |
Zhang Y, Qu JW, Zheng MN, et al. Neutralizing antibody responses against five SARS-CoV-2 variants and T lymphocyte change after vaccine breakthrough infections from the SARS-CoV-2 Omicron BA. 1 variant in Tianjin, China: a prospective study. Biomed Environ Sci, 2023; 36, 614−24. |
[45] |
Yoon SH, Kim CY, Lee E, et al. Microglial NLRP3-gasdermin D activation impairs blood-brain barrier integrity through interleukin-1β-independent neutrophil chemotaxis upon peripheral inflammation in mice. Nat Commun, 2025; 16, 699. |
[46] |
Solomon IH, Singh A, Folkerth RD, et al. What can we still learn from brain autopsies in COVID-19? Semin Neurol, 2023; 43, 195-204. |