[1] Katyayan KK, Hui YH. An evaluation of metabolite profiling of six drugs using dried blood spot. Xenobiotica, 2019; 49, 1458−69.
[2] Scherf-Clavel M, Albert E, Zieher S, et al. Dried blood spot testing for estimation of renal function and analysis of metformin and sitagliptin concentrations in diabetic patients: a cross-sectional study. Eur J Clin Pharmacol, 2019; 75, 809−16.
[3] Alidjinou EK, Moukassa D, Sané F, et al. Detection of hepatitis B virus infection markers in dried plasma spots among patients in Congo-Brazzaville. Diagn Microbiol Infect Dis, 2014; 78, 229−31.
[4] De Crignis E, Re MC, Cimatti L, et al. HIV-1 and HCV detection in dried blood spots by SYBR Green multiplex real-time RT-PCR. J Virol Methods, 2010; 165, 51−6.
[5] Paryan M, Forouzandeh MM, Kia V, et al. Design and development of an in-house multiplex RT-PCR assay for simultaneous detection of HIV-1 and HCV in plasma samples. Iran J Microbiol, 2012; 4, 8−14.
[6] Van Loo IHM, Dukers-Muijrers NHTM, Heuts R, et al. Screening for HIV, hepatitis B and syphilis on dried blood spots: a promising method to better reach hidden high-risk populations with self-collected sampling. PLoS One, 2017; 12, e0186722.
[7] Johannessen A, Garrido C, Zahonero N, et al. Dried blood spots perform well in viral load monitoring of patients who receive antiretroviral treatment in rural Tanzania. Clin Infect Dis, 2009; 49, 976−81.
[8] Boons CCLM, Timmers L, Janssen JJWM, et al. Feasibility of and patients' perspective on nilotinib dried blood spot self-sampling. Eur J Clin Pharmacol, 2019; 75, 825−9.
[9] Jennings C, Harty B, Scianna SR, et al. The stability of HIV-1 nucleic acid in whole blood and improved detection of HIV-1 in alternative specimen types when compared to Dried Blood Spot (DBS) specimens. J Virol Methods, 2018; 261, 91−7.
[10] Mercier-Delarue S, Vray M, Plantier JC, et al. Higher specificity of nucleic acid sequence-based amplification isothermal technology than of real-time PCR for quantification of HIV-1 RNA on dried blood spots. J Clin Microbiol, 2014; 52, 52−6.
[11] Zida S, Tuaillon E, Barro M, et al. Estimation of HIV-1 DNA level interfering with reliability of HIV-1 RNA quantification performed on dried blood spots collected from successfully treated patients. J Clin Microbiol, 2016; 54, 1641−3.
[12] Heymans R, Van D, Vries HD, et al. Clinical value of treponema pallidum real-time PCR for diagnosis of syphilis. J Clin Microbiol, 2009; 48, 497−502.
[13] Wang Y, Ding XQ, Zhu S, et al. Sequences analysis on TpN47 genes from different Treponema pallidum strains and the application of real-time fluorescent quantitative PCR for detection. Chin J Zoonoses, 2012; 28, 135−8. (In Chinese
[14] Orle KA, Gates CA, Martin DH, et al. Simultaneous PCR detection of Haemophilus ducreyi, Treponema pallidum, and herpes simplex virus types 1 and 2 from genital ulcers. J Clin Microbiol, 1996; 34, 49−54.
[15] Castro R, Prieto E, Águas MJ, et al. Detection of Treponema pallidum sp pallidum DNA in latent syphilis. Int J STD AIDS, 2007; 18, 842−5. doi:  10.1258/095646207782716901
[16] Vázquez-Morón S, Ryan P, Ardizone-Jiménez B, et al. Evaluation of dried blood spot samples for screening of hepatitis C and human immunodeficiency virus in a real-world setting. Sci Rep, 2018; 8, 1858.
[17] Monleau M, Aghokeng AF, Eymard-Duvernay S, et al. Field evaluation of dried blood spots for routine HIV-1 viral load and drug resistance monitoring in patients receiving antiretroviral therapy in Africa and Asia. J Clin Microbiol, 2014; 52, 578−86.
[18] WHO. Technical and operational considerations for implementing HIV viral load testing: interim technical update. https://apps.who.int/iris/bitstream/handle/10665/128121/9789241507578_eng.pdf;sequence=1. [2020-03-01].
[19] Flores GL, Cruz HM, Marques VA, et al. Performance of ANTI-HCV testing in dried blood spots and saliva according to HIV status. J Med Virol, 2017; 89, 1435−41.
[20] Agutu CA, Ngetsa CJ, Price MA, et al. Systematic review of the performance and clinical utility of point of care HIV-1 RNA testing for diagnosis and care. PLoS One, 2019; 14, e0218369.
[21] Smit PW, Sollis KA, Fiscus S, et al. Systematic review of the use of dried blood spots for monitoring HIV viral load and for early infant diagnosis. PLoS One, 2014; 9, e86461. doi:  10.1371/journal.pone.0086461
[22] Lange B, Roberts T, Cohn J, et al. Diagnostic accuracy of detection and quantification of HBV-DNA and HCV-RNA using dried blood spot (DBS) samples-a systematic review and meta-analysis. BMC Infect Dis, 2017; 17, 693. doi:  10.1186/s12879-017-2776-z
[23] Marques BLC, Do Espírito-Santo MP, et al. Evaluation of dried blood spot samples for hepatitis C virus detection and quantification. J Clin Virol, 2016; 82, 139−44. doi:  10.1016/j.jcv.2016.07.009
[24] Neogi U, Gupta S, Rodridges R, et al. Dried blood spot HIV-1 RNA quantification: a useful tool for viral load monitoring among HIV-infected individuals in India. Indian J Med Res, 2012; 136, 956−62.
[25] The Polaris Observatory HCV Collaborators. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol Hepatol, 2017; 2, 161−76. doi:  10.1016/S2468-1253(16)30181-9
[26] Arredondo M, Garrido C, Parkin N, et al. Comparison of HIV-1 RNA measurements obtained by using plasma and dried blood spots in the automated abbott real-time viral load assay. J Clin Microbiol, 2012; 50, 569−72. doi:  10.1128/JCM.00418-11
[27] Ma JQ, Ren YN, He L, et al. An efficient method for simultaneously screening for HIV, syphilis, and HCV based on one dried blood spot sample. Antivir Res, 2020; 181, 104775. doi:  10.1016/j.antiviral.2020.104775