[1] |
IPCC. Climate change 2023: synthesis report summary for policymakers. IPCC. 2023. |
[2] |
World Meteorological Organization (WMO). State of the global climate 2023. WMO. 2024. |
[3] |
Larson C. Losing arable land, China faces stark choice: adapt or go hungry. Science, 2013; 339, 644−5. doi: 10.1126/science.339.6120.644 |
[4] |
She W. Hu Huanyong: father of China’s population geography. China Popul Today, 1998; 15, 20. |
[5] |
Luan GZ, Peng ZY, Zhao F, et al. Spatiotemporal dynamics of ecosystem supply service intensity in China: patterns, drivers, and implications for sustainable development. J Environ Manage, 2024; 367, 122042. |
[6] |
China Meteorological Administration. Blue book on climate change in China 2024. Science Press. 2024. (In Chinese) |
[7] |
China Meteorological Administration. China climate bulletin 2023. China Meteorological Administration. 2023. (In Chinese) |
[8] |
Yao TD, Bolch T, Chen DL, et al. The imbalance of the Asian water tower. Nat Rev Earth Environ, 2022; 3, 618−32. doi: 10.1038/s43017-022-00299-4 |
[9] |
Cai WJ, Zhang C, Zhang SH, et al. The 2024 China report of the Lancet Countdown on health and climate change: launching a new low-carbon, healthy journey. Lancet Public Health, 2024; 9, e1070−88. doi: 10.1016/S2468-2667(24)00241-X |
[10] |
Qin DH, Ding YJ, Zhai PM, et al. The change of climate and ecological environment in China 2021: synthesis report. Science Press. 2022. (In Chinese) |
[11] |
Zhang YX, Sun Y, Hu T. Changes in extreme high temperature warning indicators over China under different global warming levels. Sci China Earth Sci, 2024; 67, 1895−909. doi: 10.1007/s11430-023-1299-1 |
[12] |
Li W, Chen Y. Detectability of the trend in precipitation characteristics over China from 1961 to 2017. Int J Climatol, 2021; 41, E1980−91. |
[13] |
Zhang JY, Wang GQ, Jin JL, et al. Evolution and variation characteristics of the recorded runoff for the major rivers in China during 1956–2018. Adv Water Sci, 2020; 31, 153−61. (In Chinese) |
[14] |
Chen HP, Sun JQ, Lin WQ, et al. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci Bull, 2020; 65, 1415−8. doi: 10.1016/j.scib.2020.05.015 |
[15] |
Wang YJ, Wang AQ, Zhai JQ, et al. Tens of thousands additional deaths annually in cities of China between 1.5°C and 2.0°C warming. Nat Commun, 2019; 10, 3376. doi: 10.1038/s41467-019-11283-w |
[16] |
Li JD, Hao X, Liao H, et al. Winter particulate pollution severity in North China driven by atmospheric teleconnections. Nat Geosci, 2022; 15, 349−55. doi: 10.1038/s41561-022-00933-2 |
[17] |
Shindell DT, Miller RL, Schmidt GA, et al. Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature, 1999; 399, 452−5. doi: 10.1038/20905 |
[18] |
Ryu YH, Min SK. Anthropogenic warming degrades spring air quality in Northeast Asia by enhancing atmospheric stability and transboundary transport. npj Climate Atmos Sci, 2024; 7, 50. doi: 10.1038/s41612-024-00603-7 |
[19] |
Guan QY, Sun XZ, Yang J, et al. Dust storms in northern China: long-term spatiotemporal characteristics and climate controls. J Climate, 2017; 30, 6683−700. doi: 10.1175/JCLI-D-16-0795.1 |
[20] |
Cai WJ, Li K, Liao H, et al. Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat Climate Change, 2017; 7, 257−62. doi: 10.1038/nclimate3249 |
[21] |
Zhao YC, Wang MY, Hu SJ, et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc Natl Acad Sci USA, 2018; 115, 4045−50. doi: 10.1073/pnas.1700292114 |
[22] |
Hong CP, Zhang Q, Zhang Y, et al. Impacts of climate change on future air quality and human health in China. Proc Natl Acad Sci USA, 2019; 116, 17193−200. doi: 10.1073/pnas.1812881116 |
[23] |
Hong CP, Zhang Q, Zhang Y, et al. Weakening aerosol direct radiative effects mitigate climate penalty on Chinese air quality. Nat Climate Change, 2020; 10, 845−50. doi: 10.1038/s41558-020-0840-y |
[24] |
Zeren YZ, Zhou BN, Zheng YH, et al. Does ozone pollution share the same formation mechanisms in the bay areas of China? Environ Sci Technol, 2022; 56, 14326-37. |
[25] |
Beckett KP, Freer‐Smith PH, Taylor G. Particulate pollution capture by urban trees: effect of species and windspeed. Glob Change Biol, 2000; 6, 995−1003. doi: 10.1046/j.1365-2486.2000.00376.x |
[26] |
He BJ, Ding L, Prasad D. Wind-sensitive urban planning and design: precinct ventilation performance and its potential for local warming mitigation in an open midrise gridiron precinct. J Build Eng, 2020; 29, 101145. doi: 10.1016/j.jobe.2019.101145 |
[27] |
O’Lenick CR, Wilhelmi OV, Michael R, et al. Urban heat and air pollution: a framework for integrating population vulnerability and indoor exposure in health risk analyses. Sci Total Environ, 2019; 660, 715−23. doi: 10.1016/j.scitotenv.2019.01.002 |
[28] |
Pfannerstill EY, Arata C, Zhu QD, et al. Temperature-dependent emissions dominate aerosol and ozone formation in Los Angeles. Science, 2024; 384, 1324−9. doi: 10.1126/science.adg8204 |
[29] |
Sun SA, Fang CL, Lv JY. Spatial inequality of water footprint in China: a detailed decomposition of inequality from water use types and drivers. J Hydrol, 2017; 553, 398−407. doi: 10.1016/j.jhydrol.2017.08.020 |
[30] |
Sun Y, Zhang XB, Ding YH, et al. Understanding human influence on climate change in China. Natl Sci Rev, 2022; 9, nwab113. doi: 10.1093/nsr/nwab113 |
[31] |
Ding YH, Wang ZY, Sun Y. Inter‐decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: observed evidences. Int J Climatol, 2008; 28, 1139−61. doi: 10.1002/joc.1615 |
[32] |
Li HX, Chen HP, Sun B, et al. A detectable anthropogenic shift toward intensified summer hot drought events over northeastern China. Earth Space Sci, 2020; 7, e2019EA000836. doi: 10.1029/2019EA000836 |
[33] |
Wan LL, Bento VA, Qu YP, et al. Drought characteristics and dominant factors across China: insights from high-resolution daily SPEI dataset between 1979 and 2018. Sci Total Environ, 2023; 901, 166362. doi: 10.1016/j.scitotenv.2023.166362 |
[34] |
Sinha E, Michalak AM, Balaji V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science, 2017; 357, 405−8. doi: 10.1126/science.aan2409 |
[35] |
Wang BD, Xin M, Wei QS, et al. A historical overview of coastal eutrophication in the China Seas. Mar Pollut Bull, 2018; 136, 394−400. doi: 10.1016/j.marpolbul.2018.09.044 |
[36] |
Wang YJ, Liu DY, Xiao WP, et al. Coastal eutrophication in China: trend, sources, and ecological effects. Harmful Algae, 2021; 107, 102058. doi: 10.1016/j.hal.2021.102058 |
[37] |
Wu JY. Challenges for safe and healthy drinking water in China. Curr Environ Health Rep, 2020; 7, 292−302. doi: 10.1007/s40572-020-00274-5 |
[38] |
Ding YH, Sun Y, Wang ZY, et al. Inter‐decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: possible causes. Int J Climatol, 2009; 29, 1926−44. doi: 10.1002/joc.1759 |
[39] |
Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob Planet Change, 2014; 112, 79−91. doi: 10.1016/j.gloplacha.2013.12.001 |
[40] |
Yang SL, Ding ZL, Li YY, et al. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proc Natl Acad Sci USA, 2015; 112, 13178−83. doi: 10.1073/pnas.1504688112 |
[41] |
Ma RH, Yang GS, Duan HT, et al. China’s lakes at present: number, area and spatial distribution. Sci China Earth Sci, 2011; 54, 283−9. doi: 10.1007/s11430-010-4052-6 |
[42] |
Zhang GQ, Yao TD, Chen WF, et al. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sens Environ, 2019; 221, 386−404. doi: 10.1016/j.rse.2018.11.038 |
[43] |
Qin Y, Abatzoglou JT, Siebert S, et al. Agricultural risks from changing snowmelt. Nat Climate Change, 2020; 10, 459−65. doi: 10.1038/s41558-020-0746-8 |
[44] |
Georgiou K, Jackson RB, Vindušková O, et al. Global stocks and capacity of mineral-associated soil organic carbon. Nat Commun, 2022; 13, 3797. doi: 10.1038/s41467-022-31540-9 |
[45] |
Qiao L, Wang XH, Smith P, et al. Soil quality both increases crop production and improves resilience to climate change. Nat Climate Change, 2022; 12, 574−80. doi: 10.1038/s41558-022-01376-8 |
[46] |
Piao SL, Ciais P, Huang Y, et al. The impacts of climate change on water resources and agriculture in China. Nature, 2010; 467, 43−51. doi: 10.1038/nature09364 |
[47] |
Tang XL, Zhao X, Bai YF, et al. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. Proc Natl Acad Sci USA, 2018; 115, 4021−6. doi: 10.1073/pnas.1700291115 |
[48] |
Crowther TW, Todd-Brown KEO, Rowe CW, et al. Quantifying global soil carbon losses in response to warming. Nature, 2016; 540, 104−8. doi: 10.1038/nature20150 |
[49] |
Wang MM, Zhang S, Guo XW, et al. Responses of soil organic carbon to climate extremes under warming across global biomes. Nat Climate Change, 2024; 14, 98−105. doi: 10.1038/s41558-023-01874-3 |
[50] |
Fang JY, Yu GR, Liu LL, et al. Climate change, human impacts, and carbon sequestration in China. Proc Natl Acad Sci USA, 2018; 115, 4015−20. doi: 10.1073/pnas.1700304115 |
[51] |
Zhang LM, Zheng QF, Liu YL, et al. Combined effects of temperature and precipitation on soil organic carbon changes in the uplands of eastern China. Geoderma, 2019; 337, 1105−15. doi: 10.1016/j.geoderma.2018.11.026 |
[52] |
Furtak K, Wolińska A. The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture–A review. CATENA, 2023; 231, 107378. doi: 10.1016/j.catena.2023.107378 |
[53] |
Lu YL, Jenkins A, Ferrier RC, et al. Addressing China’s grand challenge of achieving food security while ensuring environmental sustainability. Sci Adv, 2015; 1, e1400039. doi: 10.1126/sciadv.1400039 |
[54] |
Borrelli P, Robinson DA, Panagos P, et al. Land use and climate change impacts on global soil erosion by water (2015-2070). Proc Natl Acad Sci USA, 2020; 117, 21994−2001. doi: 10.1073/pnas.2001403117 |
[55] |
Zhao HF, Lin YH, Zhou J, et al. Quantifying the dynamic processes of soil erosion and lake sediment deposition in the Holocene in China. Quat Sci Rev, 2023; 304, 107993. doi: 10.1016/j.quascirev.2023.107993 |
[56] |
Li R, Napier TL, El-Swaify SA, et al. Global degradation of soil and water resources: regional assessment and strategies. Springer. 2022. |
[57] |
Wen X, Deng XZ. Current soil erosion assessment in the Loess Plateau of China: a mini-review. J Clean Prod, 2020; 276, 123091. doi: 10.1016/j.jclepro.2020.123091 |
[58] |
Zhang Q, Yin ZC, Lu X, et al. Synergetic roadmap of carbon neutrality and clean air for China. Environ Sci Ecotechnol, 2023; 16, 100280. doi: 10.1016/j.ese.2023.100280 |
[59] |
Tong D, Cheng J, Liu Y, et al. Dynamic projection of anthropogenic emissions in China: methodology and 2015–2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios. Atmos Chem Phys, 2020; 20, 5729−57. doi: 10.5194/acp-20-5729-2020 |
[60] |
Qi XM, Zhu CJ, Chen LD, et al. Aerosol‐cloud interactions near cloud base deteriorating the haze pollution in East China. Geophys Res Lett, 2024; 51, e2024GL109975. doi: 10.1029/2024GL109975 |
[61] |
Ding AJ, Huang X, Nie W, et al. Enhanced haze pollution by black carbon in megacities in China. Geophys Res Lett, 2016; 43, 2873−9. doi: 10.1002/2016GL067745 |
[62] |
Huang W, Cao JJ, Tao YB, et al. Seasonal variation of chemical species associated with short-term mortality effects of PM2.5 in Xi’an, a central city in China. Am J Epidemiol, 2012; 175, 556−66. doi: 10.1093/aje/kwr342 |
[63] |
Ai SQ, Lu H, Liu HY, et al. All-cause mortality attributable to long-term changes in mean temperature and diurnal temperature variation in China: a nationwide quasi-experimental study. Environ Res Lett, 2024; 19, 014002. doi: 10.1088/1748-9326/ad0d3d |
[64] |
Tong MK, Wang M, Li PF, et al. The short-term effect of ozone on pregnancy loss modified by temperature: findings from a nationwide epidemiological study in the contiguous United States. Sci Total Environ, 2023; 902, 166088. doi: 10.1016/j.scitotenv.2023.166088 |
[65] |
Chen X, Zhu T, Wang Q, et al. Higher temperature and humidity exacerbate pollutant-associated lung dysfunction in the elderly. Environ Res, 2024; 245, 118039. doi: 10.1016/j.envres.2023.118039 |
[66] |
Xue T, Kang N, Wan W, et al. Health-oriented strategies are needed to optimize China’s 2025 clean air action plan. Sci Bull, 2024; 69, 2007−8. doi: 10.1016/j.scib.2024.05.019 |
[67] |
Mora C, McKenzie T, Gaw IM, et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat Climate Change, 2022; 12, 869−75. doi: 10.1038/s41558-022-01426-1 |
[68] |
Thomson MC, Stanberry LR. Climate change and vectorborne diseases. N Engl J Med, 2022; 387, 1969−78. doi: 10.1056/NEJMra2200092 |
[69] |
Marselle MR, Stadler J, Korn H, et al. Biodiversity and health in the face of climate change. Springer. 2019. |
[70] |
Luo YZ, Lv H, Yan HC, et al. Meteorological change and hemorrhagic fever with renal syndrome epidemic in China, 2004–2018. Sci Rep, 2022; 12, 20037. doi: 10.1038/s41598-022-23945-9 |
[71] |
Reported cases and deaths of national notifiable infectious diseases—China, December, 2019. China CDC Wkly 2020; 2, 94-5. |
[72] |
Chala B, Hamde F. Emerging and re-emerging vector-borne infectious diseases and the challenges for control: a review. Front Public Health, 2021; 9, 715759. doi: 10.3389/fpubh.2021.715759 |
[73] |
Li CX, Wang ZD, Yan Y, et al. Association between hydrological conditions and dengue fever incidence in coastal southeastern China from 2013 to 2019. JAMA Netw Open, 2023; 6, e2249440. doi: 10.1001/jamanetworkopen.2022.49440 |
[74] |
Li CX, Liu Z, Li W, et al. Projecting future risk of dengue related to hydrometeorological conditions in mainland China under climate change scenarios: a modelling study. Lancet Planet Health, 2023; 7, e397−406. doi: 10.1016/S2542-5196(23)00051-7 |
[75] |
Moore AC, Herwaldt BL, Craun GF, et al. Waterborne disease in the United States, 1991 and 1992. J. AWWA, 1994; 86, 87−97. doi: 10.1002/j.1551-8833.1994.tb06155.x |
[76] |
Nichols G, Lake I, Heaviside C. Climate change and water-related infectious diseases. Atmosphere, 2018; 9, 385. doi: 10.3390/atmos9100385 |
[77] |
Semenza JC, Ko AI. Waterborne diseases that are sensitive to climate variability and climate change. N Engl J Med, 2023; 389, 2175−87. doi: 10.1056/NEJMra2300794 |
[78] |
Yu WH, Zhuang MW, Geng MJ, et al. Association between hydrometeorological conditions and infectious diarrhea in mainland China: a spatiotemporal modeling study. Environ Res Lett, 2024; 19, 064004. doi: 10.1088/1748-9326/ad44b4 |
[79] |
Zhang N, Song DD, Zhang J, et al. The impact of the 2016 flood event in Anhui Province, China on infectious diarrhea disease: an interrupted time-series study. Environ Int, 2019; 127, 801−9. doi: 10.1016/j.envint.2019.03.063 |
[80] |
Gould LH, Walsh KA, Vieira AR, et al. Surveillance for foodborne disease outbreaks - United States, 1998-2008. MMWR Surveill Summ, 2013; 62, 1−34. |
[81] |
Li HQ, Li WW, Dai Y, et al. Characteristics of settings and etiologic agents of foodborne disease outbreaks—China, 2020. China CDC Wkly, 2021; 3, 889−93. doi: 10.46234/ccdcw2021.219 |
[82] |
Li WW, Pires SM, Liu ZT, et al. Surveillance of foodborne disease outbreaks in China, 2003–2017. Food Control, 2020; 118, 107359. doi: 10.1016/j.foodcont.2020.107359 |
[83] |
Parray JA, Bandh SA, Shameem N. Climate change and microbes. Apple Academic Press. 2022. |
[84] |
Singh BK, Delgado-Baquerizo M, Egidi E, et al. Climate change impacts on plant pathogens, food security and paths forward. Nat Rev Microbiol, 2023; 21, 640−56. doi: 10.1038/s41579-023-00900-7 |
[85] |
Ma Y, Wen T, Xing DG, et al. Associations between floods and bacillary dysentery cases in main urban areas of Chongqing, China, 2005–2016: a retrospective study. Environ Health Prev Med, 2021; 26, 49. doi: 10.1186/s12199-021-00971-z |
[86] |
Liu ZD, Tong MX, Xiang JJ, et al. Daily temperature and bacillary dysentery: estimated effects, attributable risks, and future disease burden in 316 Chinese cities. Environ Health Perspect, 2020; 128, 057008. doi: 10.1289/EHP5779 |
[87] |
Jiang Y, Dou XF, Yan CQ, et al. Epidemiological characteristics and trends of notifiable infectious diseases in China from 1986 to 2016. J Glob Health, 2020; 10, 020803. doi: 10.7189/jogh.10.020803 |
[88] |
Mao Y, He RX, Zhu B, et al. Notifiable respiratory infectious diseases in China: a spatial–temporal epidemiology analysis. Int J Environ Res Public Health, 2020; 17, 2301. doi: 10.3390/ijerph17072301 |
[89] |
Feng QS, Zhang GL, Chen L, et al. Roadmap for ending TB in China by 2035: the challenges and strategies. Biosci Trends, 2024; 18, 11−20. doi: 10.5582/bst.2023.01325 |
[90] |
Li J, Chen YZ, Wang XL, et al. Influenza-associated disease burden in mainland China: a systematic review and meta-analysis. Sci Rep, 2021; 11, 2886. doi: 10.1038/s41598-021-82161-z |
[91] |
Mirsaeidi M, Motahari H, Taghizadeh Khamesi M, et al. Climate change and respiratory infections. Ann Am Thorac Soc, 2016; 13, 1223−30. doi: 10.1513/AnnalsATS.201511-729PS |
[92] |
Yin Y, Lai M, Lu KL, et al. Association between ambient temperature and influenza prevalence: a nationwide time-series analysis in 201 Chinese cities from 2013 to 2018. Environ Int, 2024; 189, 108783. doi: 10.1016/j.envint.2024.108783 |
[93] |
Li ZQ, Liu Q, Zhan MY, et al. Meteorological factors contribute to the risk of pulmonary tuberculosis: a multicenter study in eastern China. Sci Total Environ, 2021; 793, 148621. doi: 10.1016/j.scitotenv.2021.148621 |
[94] |
Breda J, Wickramasinghe K, Peters DH, et al. One size does not fit all: implementation of interventions for non-communicable diseases. BMJ, 2019; 367, l6434. |
[95] |
IPCC. Climate change 2022: impacts, adaptation and vulnerability. Contribution of working group ii to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press. 2022. |
[96] |
Yin P, Chen RJ, Wang LJ, et al. The added effects of heatwaves on cause-specific mortality: a nationwide analysis in 272 Chinese cities. Environ Int, 2018; 121, 898−905. doi: 10.1016/j.envint.2018.10.016 |
[97] |
Li DY, Zhang Y, Li XY, et al. Climatic and meteorological exposure and mental and behavioral health: a systematic review and meta-analysis. Sci Total Environ, 2023; 892, 164435. doi: 10.1016/j.scitotenv.2023.164435 |
[98] |
GBD 2021 Forecasting Collaborators. Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021. Lancet, 2024; 403, 2204−56. doi: 10.1016/S0140-6736(24)00685-8 |
[99] |
Alahmad B, Khraishah H, Royé D, et al. Associations between extreme temperatures and cardiovascular cause-specific mortality: results from 27 countries. Circulation, 2023; 147, 35−46. doi: 10.1161/CIRCULATIONAHA.122.061832 |
[100] |
Chen RJ, Yin P, Wang LJ, et al. Association between ambient temperature and mortality risk and burden: time series study in 272 main Chinese cities. BMJ, 2018; 363, k4306. |
[101] |
Guo JH, Ruan YP, Wang YQ, et al. Maternal exposure to extreme cold events and risk of congenital heart defects: a large multicenter study in China. Environ Sci Technol, 2024; 58, 3737−46. doi: 10.1021/acs.est.3c10306 |
[102] |
Jain P, Castellanos-Acuna D, Coogan SCP, et al. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat Climate Change, 2022; 12, 63−70. doi: 10.1038/s41558-021-01224-1 |
[103] |
Chen GB, Guo YM, Yue X, et al. All-cause, cardiovascular, and respiratory mortality and wildfire-related ozone: a multicountry two-stage time series analysis. Lancet Planet Health, 2024; 8, e452−62. doi: 10.1016/S2542-5196(24)00117-7 |
[104] |
Cockcroft DW. Epidemic thunderstorm asthma. Lancet Planet Health, 2018; 2, e236−7. doi: 10.1016/S2542-5196(18)30123-2 |
[105] |
Deng SZ, Jalaludin BB, Antó JM, et al. Climate change, air pollution, and allergic respiratory diseases: a call to action for health professionals. Chin Med J, 2020; 133, 1552−60. doi: 10.1097/CM9.0000000000000861 |
[106] |
Ferkol T, Schraufnagel D. The global burden of respiratory disease. Ann Am Thorac Soc, 2014; 11, 404−6. doi: 10.1513/AnnalsATS.201311-405PS |
[107] |
D’Amato G, Chong-Neto HJ, Monge-Ortega OP, et al. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy, 2020; 75, 2219−28. doi: 10.1111/all.14476 |
[108] |
Qiu H, Tian LW, Ho KF, et al. Who is more vulnerable to death from extremely cold temperatures? A case-only approach in Hong Kong with a temperate climate. Int J Biometeorol, 2016; 60, 711−7. doi: 10.1007/s00484-015-1065-z |
[109] |
Hu YB, Xu ZW, Jiang F, et al. Relative impact of meteorological factors and air pollutants on childhood allergic diseases in Shanghai, China. Sci Total Environ, 2020; 706, 135975. doi: 10.1016/j.scitotenv.2019.135975 |
[110] |
Bragg F, Holmes MV, Iona A, et al. Association between diabetes and cause-specific mortality in rural and urban areas of China. JAMA, 2017; 317, 280−9. doi: 10.1001/jama.2016.19720 |
[111] |
Gao DH, Friedman S, Hosler AS, et al. Ambient heat and diabetes hospitalizations: does the timing of heat exposure matter? Sci Total Environ, 2024; 912, 169011. |
[112] |
Fang W, Liu LF, Yin B, et al. Heat exposure intervention, anxiety level, and multi-omic profiles: a randomized crossover study. Environ Int, 2023; 181, 108247. doi: 10.1016/j.envint.2023.108247 |
[113] |
Xu RB, Zhao Q, Coelho MSZS, et al. Association between heat exposure and hospitalization for diabetes in Brazil during 2000–2015: a nationwide case-crossover study. Environ Health Perspect, 2019; 127, 117005. doi: 10.1289/EHP5688 |
[114] |
Sasai F, Roncal-Jimenez C, Rogers K, et al. Climate change and nephrology. Nephrol Dial Transplant, 2023; 38, 41−8. doi: 10.1093/ndt/gfab258 |
[115] |
Zhang LX, Long JY, Jiang WS, et al. Trends in chronic kidney disease in China. N Engl J Med, 2016; 375, 905−6. doi: 10.1056/NEJMc1602469 |
[116] |
Burkart KG, Brauer M, Aravkin AY, et al. Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: a two-part modelling approach applied to the Global Burden of Disease Study. Lancet, 2021; 398, 685−97. doi: 10.1016/S0140-6736(21)01700-1 |
[117] |
Wang FL, Wang WZ, Zhang FF, et al. Heat exposure and hospitalizations for chronic kidney disease in China: a nationwide time series study in 261 major Chinese cities. Mil Med Res, 2023; 10, 41. |
[118] |
Wang WZ, Wang FL, Yang C, et al. Associations between heat waves and chronic kidney disease in China: the modifying role of land cover. Environ Int, 2024; 186, 108657. doi: 10.1016/j.envint.2024.108657 |
[119] |
Han BF, Zheng RS, Zeng HM, et al. Cancer incidence and mortality in China, 2022. J Natl Cancer Center, 2024; 4, 47−53. doi: 10.1016/j.jncc.2024.01.006 |
[120] |
Hiatt RA, Beyeler N. Cancer and climate change. Lancet Oncol, 2020; 21, e519−27. doi: 10.1016/S1470-2045(20)30448-4 |
[121] |
Domínguez-Morueco N, Ratola N, Sierra J, et al. Combining monitoring and modelling approaches for BaP characterization over a petrochemical area. Sci Total Environ, 2019; 658, 424−38. doi: 10.1016/j.scitotenv.2018.12.202 |
[122] |
Wang HW, Zeng HM, Miao H, et al. Climate factors associated with cancer incidence: an ecological study covering 33 cancers from population-based registries in 37 countries. PLoS Climate, 2024; 3, e0000362. doi: 10.1371/journal.pclm.0000362 |
[123] |
Modenese A, Korpinen L, Gobba F. Solar radiation exposure and outdoor work: an underestimated occupational risk. Int J Environ Res Public Health, 2018; 15, 2063. doi: 10.3390/ijerph15102063 |
[124] |
Clayton S, Brown LA. Climate change and mental health. JAMA, 2024; 331, 1761−2. doi: 10.1001/jama.2024.1839 |
[125] |
An YY, Huang JL, Chen YR, et al. Longitudinal cross-lagged relationships between posttraumatic stress disorder and depression in adolescents following the Yancheng tornado in China. Psychol Trauma: Theory, Res, Pract, Policy, 2019; 11, 760−6. doi: 10.1037/tra0000455 |
[126] |
Hock RS, Bryce CP, Fischer L, et al. Childhood malnutrition and maltreatment are linked with personality disorder symptoms in adulthood: results from a Barbados lifespan cohort. Psychiatry Res, 2018; 269, 301−8. doi: 10.1016/j.psychres.2018.05.085 |
[127] |
Lu FM, Sohail MT. Exploring the effects of natural capital depletion and natural disasters on happiness and human wellbeing: a study in China. Front Psychol, 2022; 13, 870623. doi: 10.3389/fpsyg.2022.870623 |
[128] |
Zheng JL, Lin HY, Ling JY, et al The trends of disease burden due to high temperature in Mainland China from 1990 to 2019 and its prediction to 2030. Sci Rep, 2023; 13, 22238. |
[129] |
Yang J, Zhou MG, Ren ZP, et al. Projecting heat-related excess mortality under climate change scenarios in China. Nat Commun, 2021; 12, 1039. doi: 10.1038/s41467-021-21305-1 |
[130] |
Yin P, He C, Chen RJ, et al. Projection of mortality burden attributable to nonoptimum temperature with high spatial resolution in China. Environ Sci Technol, 2024; 58, 6226−35. doi: 10.1021/acs.est.3c09162 |
[131] |
Zhang GW, Sun ZB, Han L, et al. Avoidable heat-related mortality in China during the 21st century. npj Climate Atmos Sci, 2023; 6, 81. doi: 10.1038/s41612-023-00404-4 |
[132] |
Tong SL, Bambrick H, Ebi KL. Striving for a climate-resilient future. Lancet Planet Health, 2024; 8, e214−5. doi: 10.1016/S2542-5196(24)00044-5 |