[1] |
Angulo P. Nonalcoholic fatty liver disease. N Engl J Med, 2002; 346, 1221−31. doi: 10.1056/NEJMra011775 |
[2] |
Vadarlis A, Antza C, Bakaloudi DR, et al. Systematic review with meta-analysis: The effect of vitamin E supplementation in adult patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol, 2021; 36, 311−9. doi: 10.1111/jgh.15221 |
[3] |
Afzali N, Ebadi SS, Afzali H, et al. Effect of Beta vulgaris extract on liver enzymes in patients with non-alcoholic fatty liver disease: a randomized clinical trial. Hepat Mon, 2020; 20, e102125. |
[4] |
Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol, 2018; 15, 11−20. doi: 10.1038/nrgastro.2017.109 |
[5] |
Estes C, Razavi H, Loomba R, et al. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology, 2018; 67, 123−33. doi: 10.1002/hep.29466 |
[6] |
Li HP, Gu YQ, Wu XH, et al. Association between consumption of edible seaweeds and newly diagnosed non-alcohol fatty liver disease: The TCLSIH Cohort Study. Liver Int, 2021; 41, 311−20. doi: 10.1111/liv.14655 |
[7] |
Younossi ZM, Henry L. The impact of obesity and type 2 diabetes on chronic liver disease. Am J Gastroenterol, 2019; 114, 1714−5. doi: 10.14309/ajg.0000000000000433 |
[8] |
Targher G, Byrne CD, Lonardo A, et al. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J Hepatol, 2016; 65, 589−600. doi: 10.1016/j.jhep.2016.05.013 |
[9] |
Lotfi A, Saneei P, Hekmatdost A, et al. The relationship between dietary antioxidant intake and physical activity rate with nonalcoholic fatty liver disease (NAFLD): A case - Control study. Clin Nutr ESPEN, 2019; 34, 45−9. doi: 10.1016/j.clnesp.2019.09.004 |
[10] |
Le MH, Devaki P, Ha NB, et al. Prevalence of non-alcoholic fatty liver disease and risk factors for advanced fibrosis and mortality in the United States. PLoS One, 2017; 12, e0173499. doi: 10.1371/journal.pone.0173499 |
[11] |
Rinella ME, Loomba R, Caldwell SH, et al. Controversies in the diagnosis and management of NAFLD and NASH. Gastroenterol Hepatol (N Y), 2014; 10, 219−27. |
[12] |
Pietu F, Guillaud O, Walter T, et al. Ursodeoxycholic acid with vitamin E in patients with nonalcoholic steatohepatitis: long-term results. Clin Res Hepatol Gastroenterol, 2012; 36, 146−55. doi: 10.1016/j.clinre.2011.10.011 |
[13] |
Sun YY, Sun JP, Zhang PP, et al. Association of dietary fiber intake with hyperuricemia in U. S. adults. Food Funct, 2019; 10, 4932−40. doi: 10.1039/C8FO01917G |
[14] |
Buil-Cosiales P, Martinez-Gonzalez MA, Ruiz-Canela M, et al. Consumption of fruit or fiber-fruit decreases the risk of cardiovascular disease in a mediterranean young cohort. Nutrients, 2017; 9, 295. doi: 10.3390/nu9030295 |
[15] |
Yao BD, Fang H, Xu WH, et al. Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol, 2014; 29, 79−88. doi: 10.1007/s10654-013-9876-x |
[16] |
Sun BQ, Shi XY, Wang T, et al. Exploration of the association between dietary fiber intake and hypertension among U. S. adults using 2017 American College of Cardiology/American Heart Association blood pressure guidelines: NHANES 2007⁻2014. Nutrients, 2018; 10, 1091. doi: 10.3390/nu10081091 |
[17] |
Kranz S, Dodd KW, Juan WY, et al. Whole grains contribute only a small proportion of dietary fiber to the U. S. diet. Nutrients, 2017; 9, 153. doi: 10.3390/nu9020153 |
[18] |
Mollard RC, Sénéchal M, MacIntosh AC, et al. Dietary determinants of hepatic steatosis and visceral adiposity in overweight and obese youth at risk of type 2 diabetes. Am J Clin Nutr, 2014; 99, 804−12. doi: 10.3945/ajcn.113.079277 |
[19] |
Ouyang XS, Cirillo P, Sautin Y, et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol, 2008; 48, 993−9. doi: 10.1016/j.jhep.2008.02.011 |
[20] |
Shim P, Choi D, Park Y. Association of blood fatty acid composition and dietary pattern with the risk of non-alcoholic fatty liver disease in patients who underwent cholecystectomy. Ann Nutr Metab, 2017; 70, 303−11. doi: 10.1159/000475605 |
[21] |
Dorosti M, Jafary Heidarloo A, Bakhshimoghaddam F, et al. Whole-grain consumption and its effects on hepatic steatosis and liver enzymes in patients with non-alcoholic fatty liver disease: a randomised controlled clinical trial. Br J Nutr, 2020; 123, 328−36. doi: 10.1017/S0007114519002769 |
[22] |
Koutnikova H, Genser B, Monteiro-Sepulveda M, et al. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open, 2019; 9, e017995. doi: 10.1136/bmjopen-2017-017995 |
[23] |
Maleki Z, Jazayeri S, Eslami O, et al. Effect of soy milk consumption on glycemic status, blood pressure, fibrinogen and malondialdehyde in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Complement Ther Med, 2019; 44, 44−50. doi: 10.1016/j.ctim.2019.02.020 |
[24] |
Al-Busafi SA, Bhat M, Wong P, et al. Antioxidant therapy in nonalcoholic steatohepatitis. Hepat Res Treat, 2012; 2012, 947575. |
[25] |
Pickett-Blakely O, Young K, Carr RM. Micronutrients in nonalcoholic fatty liver disease pathogenesis. Cell Mol Gastroenterol Hepatol, 2018; 6, 451−62. doi: 10.1016/j.jcmgh.2018.07.004 |
[26] |
USDA, ARS. What we eat in America, NHANES 2009-2010. http://www.ars.usda.gov/SP2UserFiles/Place/12355000/pdf/0910/Table_1_NIN_GEN_09.pdf. [2011-02-23 |
[27] |
Reboul E. Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins. Nutrients, 2013; 5, 3563−81. doi: 10.3390/nu5093563 |
[28] |
Hollander D, Muralidhara KS. Vitamin A1 intestinal absorption in vivo: influence of luminal factors on transport. Am J Physiol, 1977; 232, E471−7. |
[29] |
Hollander D, Ruble PE Jr. beta-carotene intestinal absorption: bile, fatty acid, pH, and flow rate effects on transport. Am J Physiol, 1978; 235, E686−91. |
[30] |
Hollander D. Intestinal absorption of vitamins A, E, D, and K. J Lab Clin Med, 1981; 97, 449−62. |
[31] |
Yilmaz B, Sahin K, Bilen H, et al. Carotenoids and non-alcoholic fatty liver disease. Hepatobiliary Surg Nutr, 2015; 4, 161−71. |
[32] |
Lim HS, Choi J, Lee B, et al. Association between inflammatory biomarkers and nutritional status in fatty liver. Clin Nutr Res, 2020; 9, 182−94. doi: 10.7762/cnr.2020.9.3.182 |
[33] |
Vahid F, Rahmani D, Hekmatdoost A. The association between dietary antioxidant index (DAI) and nonalcoholic fatty liver disease (NAFLD) onset; new findings from an incident case-control study. Clin Nutr ESPEN, 2021; 41, 360−4. doi: 10.1016/j.clnesp.2020.10.020 |
[34] |
Ma CF, Liu YW, He SL, et al. Negative association between antioxidant vitamin intake and non-alcoholic fatty liver disease in Chinese non-diabetic adults: mediation models involving superoxide dismutase. Free Radic Res, 2020; 54, 670−7. doi: 10.1080/10715762.2020.1825705 |
[35] |
Coelho JM, Cansanção K, de Mello Perez R, et al. Association between serum and dietary antioxidant micronutrients and advanced liver fibrosis in non-alcoholic fatty liver disease: an observational study. PeerJ, 2020; 8, e9838. doi: 10.7717/peerj.9838 |
[36] |
Disse E, Ledoux S, Bétry C, et al. An artificial neural network to predict resting energy expenditure in obesity. Clin Nutr, 2018; 37, 1661−9. doi: 10.1016/j.clnu.2017.07.017 |
[37] |
Aghamaleki FS, Mollashahi B, Nosrati M, et al. Application of an artificial neural network in the diagnosis of chronic lymphocytic leukemia. Cureus, 2019; 11, e4004. |
[38] |
Raghupathi V, Raghupathi W. Preventive healthcare: A neural network analysis of behavioral habits and chronic diseases. Healthcare (Basel), 2017; 5, 8. |
[39] |
Fernández-Granero MA, Sánchez-Morillo D, León-Jiménez A, et al. Automatic prediction of chronic obstructive pulmonary disease exacerbations through home telemonitoring of symptoms. Biomed Mater Eng, 2014; 24, 3825−32. |
[40] |
Carlucci D, Renna P, Schiuma G. Evaluating service quality dimensions as antecedents to outpatient satisfaction using back propagation neural network. Health Care Manag Sci, 2013; 16, 37−44. doi: 10.1007/s10729-012-9211-1 |
[41] |
Zeng J, Zhang JG, Li ZY, et al. Prediction model of artificial neural network for the risk of hyperuricemia incorporating dietary risk factors in a Chinese adult study. Food Nutr Res, 2020; 64, 3712. |
[42] |
Xu M, Wong TC, Chin KS. Modeling daily patient arrivals at Emergency Department and quantifying the relative importance of contributing variables using artificial neural network. Decis Support Syst, 2013; 54, 1488−98. doi: 10.1016/j.dss.2012.12.019 |
[43] |
NCHS. National Health and Nutrition Examination Survey (NHANES). http://www.cdc.gov/nchs/nhanes.htm. [2022-08-26 |
[44] |
Zipf G, Chiappa M, Porter KS, et al. National health and nutrition examination survey: plan and operations, 1999-2010. Vital Health Stat 1, 2013; 1–37. |
[45] |
Choi WJ, Ford ES, Curhan G, et al. Independent association of serum retinol and β-carotene levels with hyperuricemia: A national population study. Arthritis Care Res (Hoboken), 2012; 64, 389−96. |
[46] |
Zhai TY, Chen Q, Xu J, et al. Prevalence and trends in low bone density, osteopenia and osteoporosis in U. S. adults with non-alcoholic fatty liver disease, 2005-2014. Front Endocrinol (Lausanne), 2022; 12, 825448. doi: 10.3389/fendo.2021.825448 |
[47] |
Ruhl CE, Everhart JE. Fatty liver indices in the multiethnic United States National Health and Nutrition Examination Survey. Aliment Pharmacol Ther, 2015; 41, 65−76. doi: 10.1111/apt.13012 |
[48] |
Kim D, Kim W, Adejumo AC, et al. Race/ethnicity-based temporal changes in prevalence of NAFLD-related advanced fibrosis in the United States, 2005-2016. Hepatol Int, 2019; 13, 205−13. doi: 10.1007/s12072-018-09926-z |
[49] |
Kim D, Yoo ER, Li AA, et al. Depression is associated with non-alcoholic fatty liver disease among adults in the United States. Aliment Pharmacol Ther, 2019; 50, 590−8. doi: 10.1111/apt.15395 |
[50] |
Meffert PJ, Baumeister SE, Lerch MM, et al. Development, external validation, and comparative assessment of a new diagnostic score for hepatic steatosis. Am J Gastroenterol, 2014; 109, 1404−14. doi: 10.1038/ajg.2014.155 |
[51] |
Zhang PP, Sun JP, Guo Y, et al. Association between retinol intake and hyperuricaemia in adults. Public Health Nutr, 2021; 24, 2205−14. doi: 10.1017/S1368980020000324 |
[52] |
Menke A, Casagrande S, Geiss L, et al. Prevalence of and trends in diabetes among adults in the United States, 1988-2012. JAMA, 2015; 314, 1021−9. doi: 10.1001/jama.2015.10029 |
[53] |
Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension, 2018; 71, e13−115. |
[54] |
Hearty ÁP, Gibney MJ. Analysis of meal patterns with the use of supervised data mining techniques--artificial neural networks and decision trees. Am J Clin Nutr, 2008; 88, 1632−42. doi: 10.3945/ajcn.2008.26619 |
[55] |
Gupta H, Gupta PK, Fang X, et al. Development and validation of a risk calculator predicting postoperative respiratory failure. Chest, 2011; 140, 1207−15. doi: 10.1378/chest.11-0466 |
[56] |
Mukamal KJ, Ding EL, Djoussé L. Alcohol consumption, physical activity, and chronic disease risk factors: a population-based cross-sectional survey. BMC Public Health, 2006; 6, 118. doi: 10.1186/1471-2458-6-118 |
[57] |
Montie JE, Wei JT. Artificial neural networks for prostate carcinoma risk assessment. An overview. Cancer, 2001; 91, 1647−52. doi: 10.1002/1097-0142(20010415)91:8+<1647::AID-CNCR1178>3.0.CO;2-3 |
[58] |
Grossi E. How artificial intelligence tools can be used to assess individual patient risk in cardiovascular disease: problems with the current methods. BMC Cardiovasc Disord, 2006; 6, 20. doi: 10.1186/1471-2261-6-20 |
[59] |
Florkowski CM. Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. Clin Biochem Rev, 2008; 29 Suppl 1, S83-7. |
[60] |
Defernez M, Kemsley EK. Avoiding overfitting in the analysis of high-dimensional data with artificial neural networks (ANNs). Analyst, 1999; 124, 1675−81. doi: 10.1039/A905556H |
[61] |
Federico A, Dallio M, Caprio GG, et al. Qualitative and quantitative evaluation of dietary intake in patients with non-alcoholic steatohepatitis. Nutrients, 2017; 9, 1074. doi: 10.3390/nu9101074 |
[62] |
Mecocci P, Polidori MC, Troiano L, et al. Plasma antioxidants and longevity: a study on healthy centenarians. Free Radic Biol Med, 2000; 28, 1243−8. doi: 10.1016/S0891-5849(00)00246-X |
[63] |
Edwards AJ, You CS, Swanson JE, et al. A novel extrinsic reference method for assessing the vitamin A value of plant foods. Am J Clin Nutr, 2001; 74, 348−55. doi: 10.1093/ajcn/74.3.348 |
[64] |
Yeum KJ, Russell RM. Carotenoid bioavailability and bioconversion. Annu Rev Nutr, 2002; 22, 483−504. doi: 10.1146/annurev.nutr.22.010402.102834 |
[65] |
Hickenbottom SJ, Follett JR, Lin YM, et al. Variability in conversion of β-carotene to vitamin A in men as measured by using a double-tracer study design. Am J Clin Nutr, 2002; 75, 900−7. doi: 10.1093/ajcn/75.5.900 |
[66] |
Ni YH, Nagashimada M, Zhan LL, et al. Prevention and reversal of lipotoxicity-induced hepatic insulin resistance and steatohepatitis in mice by an antioxidant carotenoid, β-cryptoxanthin. Endocrinology, 2015; 156, 987−99. doi: 10.1210/en.2014-1776 |
[67] |
Elvira-Torales LI, García-Alonso J, Periago-Castón MJ. Nutritional importance of carotenoids and their effect on liver health: A review. Antioxidants (Basel), 2019; 8, 229. doi: 10.3390/antiox8070229 |
[68] |
Christensen K, Lawler T, Mares J. Dietary carotenoids and non-alcoholic fatty liver disease among US adults, NHANES 2003-2014. Nutrients, 2019; 11, 1101. doi: 10.3390/nu11051101 |
[69] |
Yoneda M, Mawatari H, Fujita K, et al. High-sensitivity C-reactive protein is an independent clinical feature of nonalcoholic steatohepatitis (NASH) and also of the severity of fibrosis in NASH. J Gastroenterol, 2007; 42, 573−82. doi: 10.1007/s00535-007-2060-x |
[70] |
Abe RAM, Masroor A, Khorochkov A, et al. The role of vitamins in non-alcoholic fatty liver disease: A systematic review. Cureus, 2021; 13, e16855. |
[71] |
Shih PH, Shiue SJ, Chen CN, et al. Fucoidan and fucoxanthin attenuate hepatic steatosis and inflammation of NAFLD through modulation of leptin/adiponectin axis. Mar Drugs, 2021; 19, 148. doi: 10.3390/md19030148 |
[72] |
Iwaki M, Matsuda M, Maeda N, et al. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes, 2003; 52, 1655−63. doi: 10.2337/diabetes.52.7.1655 |
[73] |
Cimini FA, Barchetta I, Carotti S, et al. Relationship between adipose tissue dysfunction, vitamin D deficiency and the pathogenesis of non-alcoholic fatty liver disease. World J Gastroenterol, 2017; 23, 3407−17. doi: 10.3748/wjg.v23.i19.3407 |