[1] Smith RA, Andrews KS, Brooks D, et al. Cancer screening in the United States, 2019: a review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin, 2019; 69, 184−210. doi:  10.3322/caac.21557
[2] Sawan C, Herceg Z. Histone modifications and cancer. Adv Genet, 2010; 70, 57−85.
[3] McCabe MT, Mohammad HP, Barbash O, et al. Targeting histone methylation in cancer. Cancer J, 2017; 23, 292−301. doi:  10.1097/PPO.0000000000000283
[4] Nishioka K, Rice JC, Sarma K, et al. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell, 2002; 9, 1201−13. doi:  10.1016/S1097-2765(02)00548-8
[5] Shi XB, Kachirskaia I, Yamaguchi H, et al. Modulation of p53 function by set8-mediated methylation at lysine 382. Mol Cell, 2007; 27, 636−46. doi:  10.1016/j.molcel.2007.07.012
[6] Yu N, Huangyang PW, Yang XH, et al. MicroRNA-7 suppresses the invasive potential of breast cancer cells and sensitizes cells to DNA damages by targeting histone methyltransferase SET8. J Biol Chem, 2013; 288, 19633−42. doi:  10.1074/jbc.M113.475657
[7] Beck DB, Oda H, Shen SS, et al. PR-Set7 and H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription. Genes Dev, 2012; 26, 325−37. doi:  10.1101/gad.177444.111
[8] Huen MSY, Sy SMH, van Deursen JM, et al. Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. J Biol Chem, 2008; 283, 11073−7. doi:  10.1074/jbc.C700242200
[9] Houston SI, McManus KJ, Adams MM, et al. Catalytic function of the PR-Set7 histone H4 lysine 20 monomethyltransferase is essential for mitotic entry and genomic stability. J Biol Chem, 2008; 283, 19478−88. doi:  10.1074/jbc.M710579200
[10] Jørgensen S, Schotta G, Sørensen CS. Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res, 2013; 41, 2797−806. doi:  10.1093/nar/gkt012
[11] Cerami E, Gao JJ, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov, 2012; 2, 401−4. doi:  10.1158/2159-8290.CD-12-0095
[12] Hoadley KA, Yau C, Hinoue T, et al. Cell-of-origin patterns dominate the molecular classification of 10, 000 tumors from 33 types of cancer. Cell, 2018; 173, 291−304.e6. doi:  10.1016/j.cell.2018.03.022
[13] Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods, 2014; 11, 783−4. doi:  10.1038/nmeth.3047
[14] Puchtler H, Sweat Waldrop F, Conner HM, et al. Carnoy fixation: practical and theoretical considerations. Histochemie, 1968; 16, 361−71. doi:  10.1007/BF00306359
[15] Hayashi M. The micronucleus test—most widely used in vivo genotoxicity test—. Genes Environ, 2016; 38, 18. doi:  10.1186/s41021-016-0044-x
[16] Savage JRK. A comment on the quantitative relationship between micronuclei and chromosomal aberrations. Mutat Res Lett, 1988; 207, 33−6. doi:  10.1016/0165-7992(88)90008-5
[17] Yuan HT, Yan M, Zhang GX, et al. CancerSEA: a cancer single-cell state atlas. Nucleic Acids Res, 2019; 47, D900−8. doi:  10.1093/nar/gky939
[18] Kim KT, Lee HW, Lee HO, et al. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol, 2015; 16, 127. doi:  10.1186/s13059-015-0692-3
[19] Guillaumet-Adkins A, Rodríguez-Esteban G, Mereu E, et al. Single-cell transcriptome conservation in cryopreserved cells and tissues. Genome Biol, 2017; 18, 45. doi:  10.1186/s13059-017-1171-9
[20] Braune EB, Tsoi YL, Phoon YP, et al. Loss of CSL unlocks a hypoxic response and enhanced tumor growth potential in breast cancer cells. Stem Cell Reports, 2016; 6, 643−51. doi:  10.1016/j.stemcr.2016.03.004
[21] Jordan NV, Bardia A, Wittner BS, et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature, 2016; 537, 102−6. doi:  10.1038/nature19328
[22] van Oorschot B, Hovingh SE, Moerland PD, et al. Reduced activity of double-strand break repair genes in prostate cancer patients with late normal tissue radiation toxicity. Int J Radiat Oncol Biol Phys, 2014; 88, 664−70. doi:  10.1016/j.ijrobp.2013.11.219
[23] Li F, Liu B, Zhou XL, et al. Silencing of E3 ubiquitin ligase RNF8 enhances ionizing radiation sensitivity of medulloblastoma cells by promoting the deubiquitination of PCNA. Oncol Res, 2018; 26, 1365−73. doi:  10.3727/096504018X15154085345907
[24] Pogribny I, Koturbash I, Tryndyak V, et al. Fractionated low-dose radiation exposure leads to accumulation of DNA damage and profound alterations in DNA and histone methylation in the murine thymus. Mol Cancer Res, 2005; 3, 553−61. doi:  10.1158/1541-7786.MCR-05-0074
[25] Maroschik B, Gürtler A, Krämer A, et al. Radiation-induced alterations of histone post-translational modification levels in lymphoblastoid cell lines. Radiat Oncol, 2014; 9, 15. doi:  10.1186/1748-717X-9-15
[26] Sak A, Kübler D, Bannik K, et al. Dependence of radiation-induced H2AX phosphorylation on histone methylation: evidence from the chromatin immunoprecipitation assay. Int J Radiat Biol, 2015; 91, 346−53. doi:  10.3109/09553002.2015.997895
[27] Game JC, Williamson MS, Spicakova T, et al. The RAD6/BRE1 histone modification pathway in saccharomyces confers radiation resistance through a RAD51-dependent process that is independent of RAD18. Genetics, 2006; 173, 1951−68. doi:  10.1534/genetics.106.057794
[28] Zhang BP, Li B, Cheng JY, et al. Anti-cancer effect of 20(S)-ginsenoside-Rh2 on oral squamous cell carcinoma cells via the decrease in ROS and downregulation of MMP-2 and VEGF. Biomed Environ Sci, 2020; 33, 713−7.
[29] Dai XY, Song AY, Mu L, et al. Potential function of MMP3 gene in degradation of extracellular matrix complex in colorectal carcinoma. Biomed Environ Sci, 2021; 34, 66−70.
[30] Lu X, Simon MD, Chodaparambil JV, et al. The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol, 2008; 15, 1122−4. doi:  10.1038/nsmb.1489
[31] Dulev S, Tkach J, Lin SC, et al. SET8 methyltransferase activity during the DNA double-strand break response is required for recruitment of 53BP1. EMBO Rep, 2014; 15, 1163−74. doi:  10.15252/embr.201439434
[32] Gursoy-Yuzugullu O, House N, Price BD. Patching broken DNA: nucleosome dynamics and the repair of DNA breaks. J Mol Biol, 2016; 428, 1846−60. doi:  10.1016/j.jmb.2015.11.021
[33] Zhao MJ, Song YF, Niu HT, et al. Adenovirus-mediated downregulation of the ubiquitin ligase RNF8 sensitizes bladder cancer to radiotherapy. Oncotarget, 2016; 7, 8956−67. doi:  10.18632/oncotarget.6909
[34] Tan XH, Peng J, Fu YB, et al. miR-638 mediated regulation of BRCA1affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer. Breast Cancer Res, 2014; 16, 435. doi:  10.1186/s13058-014-0435-5
[35] Zhou HX, Mu XQ, Chen J, et al. RNAi silencing targeting RNF8 enhances radiosensitivity of a non-small cell lung cancer cell line A549. Int J Radiat Biol, 2013; 89, 708−15. doi:  10.3109/09553002.2013.792964
[36] Blum G, Ibáñez G, Rao XJ, et al. Small-molecule inhibitors of SETD8 with cellular activity. ACS Chem Biol, 2014; 9, 2471−8. doi:  10.1021/cb500515r
[37] Bromberg KD, Mitchell TRH, Upadhyay AK, et al. The SUV4-20 inhibitor A-196 verifies a role for epigenetics in genomic integrity. Nat Chem Biol, 2017; 13, 317−24. doi:  10.1038/nchembio.2282
[38] Gursoy-Yuzugullu O, Carman C, Serafim RB, et al. Epigenetic therapy with inhibitors of histone methylation suppresses DNA damage signaling and increases glioma cell radiosensitivity. Oncotarget, 2017; 8, 24518−32. doi:  10.18632/oncotarget.15543