[1] Yahyazadeh A, Altunkaynak BZ. Protective effects of luteolin on rat testis following exposure to 900 MHz electromagnetic field. Biotech Histochem, 2019; 23, 1−10.
[2] Ulubay M, Yahyazadeh A, Deniz ÖG, et al. Effects of prenatal 900 MHz electromagnetic field exposures on the histology of rat kidney. Int J Radiat Biol, 2015; 91, 35−41. doi:  10.3109/09553002.2014.950436
[3] Budziosz J, Stanek A, Sieroń A, et al. Effects of low-frequency electromagnetic field on oxidative stress in selected structures of the central nervous system. Oxid Med Cell Longev, 2018; 2018, 1427412.
[4] Shahin NN, El-Nabarawy NA, Gouda AS, et al. The protective role of spermine against male reproductive aberrations induced by exposure to electromagnetic field - an experimental investigation in the rat. Toxicol Appl Pharmacol, 2019; 370, 117−30. doi:  10.1016/j.taap.2019.03.009
[5] Nittby H, Brun A, Eberhardt J, et al. Increased blood-brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology, 2009; 16, 103−12. doi:  10.1016/j.pathophys.2009.01.001
[6] Sirav B, Seyhan N. Effects of radiofrequency radiation exposure on the blood brain barrier permeability in male and female rats. Electromag Biol Med, 2011; 30, 253−60. doi:  10.3109/15368378.2011.600167
[7] Fredriksson K, Kalimo H, Norberg C, et al. Nerve cell injury in the brain of strokeprone spontaneously hypertensive rats Acta Neuropathol. Acta Neuropathol, 1988; 76, 227−37. doi:  10.1007/BF00687769
[8] Salford L, Nittby H, Brun A, et al. The mammalian brain in the electromagnetic fields designed by man with special reference to blood-brain barrier function, neuronal damage and possible physical mechanisms. Prog Theor Phys Supp, 2008; 173, 283−309. doi:  10.1143/PTPS.173.283
[9] Kim JH, Lee JK, Kim HG, et al. Possible effects of radiofrequency electromagnetic field exposure on central nerve system. Biomol Ther (Seoul), 2019; 27, 265−75. doi:  10.4062/biomolther.2018.152
[10] Jiang DP, Li JH, Zhang J, et al. Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1. Brain Res, 2016; 1642, 10−9. doi:  10.1016/j.brainres.2016.02.053
[11] Yahyazadeh A, Deniz ÖG, Kaplan AA, et al. The genomic effects of cell phone exposure on the reproductive system. Environ Res, 2018; 167, 684−93. doi:  10.1016/j.envres.2018.05.017
[12] Kıvrak EG, Yurt KK, Kaplan AA, et al. Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct, 2017; 5, 167−76. doi:  10.1016/j.jmau.2017.07.003
[13] Haripriya D, Sangeetha P, Kanchana A, et al. Modulation of age-associated oxidative DNA damage in rat brain cerebral cortex, striatum and hippocampus by L-karnitine. Exp Gerontol, 2005; 40, 129−35. doi:  10.1016/j.exger.2004.10.006
[14] Haripriya D, Devi MA, Kokilavani V, et al. Age-dependent alterations in mitochondrial enzymes in cortex, striatum and hippocampus of rat brain-potential role of L-karnitine. Biogerontology, 2004; 5, 355−64. doi:  10.1007/s10522-004-2575-y
[15] Kesari KK, Siddiqui MH, Meena R, et al. Cell phone radiation exposure on brain and associated biological systems. Indian J Exp Biol, 2013; 51, 187−200.
[16] Balaguru S, Uppal R, Vaid RP, et al. Investigation of the spinal cord as a natural receptor antenna for incident electromagnetic waves and possible impact on the central nervous system. Electromagn Biol Med, 2012; 31, 101−11. doi:  10.3109/15368378.2011.624653
[17] Kerimoğlu G, Aslan A, Baş O, et al. Adverse effects in lumbar spinal cord morphology and tissue biochemistry in Sprague Dawley male rats following exposure to a continuous 1-h a day 900-MHz electromagnetic field throughout adolescence. J Chem Neuroanat, 2016; 78, 125−30. doi:  10.1016/j.jchemneu.2016.09.007
[18] Lopez-Lazaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem, 2009; 9, 31−59. doi:  10.2174/138955709787001712
[19] Lin Y, Shi R, Wang X, et al. Luteolin, a flavonoid with potentials for cancer prevention and therapy. Curr Cancer Drug Targets, 2008; 8, 634−46. doi:  10.2174/156800908786241050
[20] Manju V, Balasubramaniyan V, Nalini N. Rat colonic lipid peroxidation and antioxidant status: the effects of dietary luteolin on 1,2-dimethylhydrazine challenge. Cell Mol Biol Lett, 2005; 10, 535−55.
[21] Zhang Q, Yang J, Wang J. Modulatory effect of luteolin on redox homeostasis and inflammatory cytokines in a mouse model of liver cancer. Oncol Lett, 2016; 12, 4767−72. doi:  10.3892/ol.2016.5291
[22] Koç GE, Kaplan S, Altun G, et al. Neuroprotective effects of melatonin and omega-3 on hippocampal cells prenatally exposed to 900 MHz electromagnetic fields. Int J Radiat Biol, 2016; 92, 590−5. doi:  10.1080/09553002.2016.1206223
[23] Yahyazadeh A, Altunkaynak BZ. Investigation of the neuroprotective effects of thymoquinone on rat spinal cord exposed to 900 MHz electromagnetic field. J Chem Neuroanat, 2019; 100, 101657. doi:  10.1016/j.jchemneu.2019.101657
[24] Koyu A, Cesur G, Ozguner F, et al. Effects of 900 MHz electromagnetic field on TSH and thyroid hormones in rats. Toxicol Lett, 2005; 157, 257−62. doi:  10.1016/j.toxlet.2005.03.006
[25] Altunkaynak BZ, Akgül N, Yahyazedeh A, et al. A stereological study of the effects of mercury inhalation on the cerebellum. Biotech Histochem, 2019; 94, 42−7. doi:  10.1080/10520295.2018.1493224
[26] Altunkaynak BZ, Akgül N, Yahyazadeh A, et al. Effect of mercury vapor inhalation on rat ovary: Stereology and histopathology. J Obstet Gynaecol, 2016; 42, 410−16.
[27] Gundersen HJ, Bagger P, Bendtsen TF, et al. The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS, 1988; 96, 857−81. doi:  10.1111/j.1699-0463.1988.tb00954.x
[28] Yahyazedeh A, Altunkaynak BZ, Akgül N, et al. A histopathological and stereological study of liver damage in female rats caused by mercury vapor. Biotech Histochem, 2017; 92, 338−46. doi:  10.1080/10520295.2017.1312527
[29] Altunkaynak ME, Akgül N, Yahyazadeh A, et al. A stereological and histopathological study of the effects of exposure of male rat testes to mercury vapor. Biotech Histochem, 2015; 90, 529−34. doi:  10.3109/10520295.2015.1024739
[30] Gundersen HJ, Jensen EB. The efficiency of systematic sampling in stereology and its prediction. J Microsc, 1987; 147, 229−63. doi:  10.1111/j.1365-2818.1987.tb02837.x
[31] Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem, 1988; 34, 497−500. doi:  10.1093/clinchem/34.3.497
[32] Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem, 1951; 193, 265−75.
[33] Fu L, Liu K, Wake H, et al. Therapeutic effects of anti-HMGB1 monoclonal antibody on pilocarpine-induced status epilepticus in mice. Sci Rep, 2017; 7, 1179. doi:  10.1038/s41598-017-01325-y
[34] Hansson HA. Effects on the nervous system by exposure to electromagnetic fields: experimental and clinical studies. Prog Clin Biol Res, 1988; 257, 119−34.
[35] Altun G, Kaplan S, Deniz OG, et al. Protective effects of melatonin and omega-3 on the hippocampus and the cerebellum of adult Wistar albino rats exposed to electromagnetic fields. J Microsc Ultrastruct, 2017; 5, 230−41. doi:  10.1016/j.jmau.2017.05.006
[36] Alkis ME, Bilgin HM, Akpolat V, et al. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol Med, 2019; 38, 32−47. doi:  10.1080/15368378.2019.1567526
[37] Fujii J, Tsunoda S. Redox regulation of fertilisation and the spermatogenic process. Asian J Androl, 2011; 13, 420−23. doi:  10.1038/aja.2011.10
[38] Helbock HJ, Beckman KB, Ames BN. 8-hydroxydeoxyguanosine and 8-hydroxyguanine as biomarkers of oxidative DNA damage. Methods Enzymol, 1999; 300, 156−66. doi:  10.1016/S0076-6879(99)00123-8
[39] Hu JJ, Dubin N, Kurland D, et al. The effects of hydrogen-peroxide on DNA-repair activities. Mutat Res, 1995; 336, 193−201. doi:  10.1016/0921-8777(94)00054-A
[40] Xu S, Zhou Z, Zhang L, et al. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res, 2010; 1311, 189−96. doi:  10.1016/j.brainres.2009.10.062
[41] Tang J, Zhang Y, Yang L, et al. Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats. Brain Res, 2015; 1601, 92−101. doi:  10.1016/j.brainres.2015.01.019
[42] Phillips JL, Singh NP, Lai H. Electromagnetic fields and DNA damage. Pathophysiology, 2009; 16, 79−88. doi:  10.1016/j.pathophys.2008.11.005
[43] Hamada AJ, Singh A, Agarwal A. Cell phones and their impact on male fertility: fact or fiction. Open Reprod Sci J, 2011; 5, 125−37.
[44] Fu J, Sun H, Zhang Y, et al. Neuroprotective Effects of Luteolin Against Spinal Cord Ischemia-Reperfusion Injury by Attenuation of Oxidative Stress, Inflammation, and Apoptosis. J Med Food, 2018; 21, 13−20. doi:  10.1089/jmf.2017.4021
[45] Paterniti I, Impellizzeri D, Di Paola R, et al. A new co-ultramicronized composite including palmitoylethanolamide and luteolin to prevent neuroinflammation in spinal cord injury. J Neuroinflammation, 2013; 10, 91.
[46] İkinci A, Mercantepe T, Unal D, et al. Morphological and antioxidant impairments in the spinal cord of male offspring rats following exposure to a continuous 900MHz electromagnetic field during early and mid-adolescence. J Chem Neuroanat, 2016; 75, 99−104. doi:  10.1016/j.jchemneu.2015.11.006
[47] Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 2002; 418, 191−5. doi:  10.1038/nature00858