[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021; 71, 209−49. doi: 10.3322/caac.21660 |
[2] |
Nistal E, Fernández-Fernández N, Vivas S, et al. Factors determining colorectal cancer: the role of the intestinal microbiota. Front Oncol, 2015; 5, 220. |
[3] |
Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin, 2017; 67, 177−93. doi: 10.3322/caac.21395 |
[4] |
Tanaka T. Colorectal carcinogenesis: review of human and experimental animal studies. J Carcinog, 2009; 8, 5. doi: 10.4103/1477-3163.49014 |
[5] |
Okugawa Y, Grady WM, Goel A. Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology, 2015; 149, 1204-25. e12. |
[6] |
Asplund J, Kauppila JH, Mattsson F, et al. Survival trends in gastric adenocarcinoma: a population-based study in Sweden. Ann Surg Oncol, 2018; 25, 2693−702. doi: 10.1245/s10434-018-6627-y |
[7] |
Camps J, Nguyen QT, Padilla-Nash HM, et al. Integrative genomics reveals mechanisms of copy number alterations responsible for transcriptional deregulation in colorectal cancer. Genes Chromosomes Cancer, 2009; 48, 1002−17. doi: 10.1002/gcc.20699 |
[8] |
Zamani M, Foroughmand AM, Hajjari MR, et al. CASC11 and PVT1 spliced transcripts play an oncogenic role in colorectal carcinogenesis. Front Oncol, 2022; 12, 954634. doi: 10.3389/fonc.2022.954634 |
[9] |
Wang XH, Liang QY, Zhang LH, et al. C8orf76 promotes gastric tumorigenicity and metastasis by directly inducing lncRNA DUSP5P1 and associates with patient outcomes. Clin Cancer Res, 2019; 25, 3128−40. doi: 10.1158/1078-0432.CCR-18-2804 |
[10] |
Li DG, Pan JH, Zhang YY, et al. C8orf76 modulates ferroptosis in liver cancer via transcriptionally up-regulating SLC7A11. Cancers (Basel), 2022; 14, 3410. doi: 10.3390/cancers14143410 |
[11] |
Wang YT, Dong XS. High expression of C8orf76 is an independent predictive factor of poor prognosis in patients with breast cancer. Adv Ther, 2022; 39, 2946−60. doi: 10.1007/s12325-022-02159-5 |
[12] |
Ried T, Meijer GA, Harrison DJ, et al. The landscape of genomic copy number alterations in colorectal cancer and their consequences on gene expression levels and disease outcome. Mol Aspects Med, 2019; 69, 48−61. doi: 10.1016/j.mam.2019.07.007 |
[13] |
Goel S, Bergholz JS, Zhao JJ. Targeting CDK4 and CDK6 in cancer. Nat Rev Cancer, 2022; 22, 356−72. doi: 10.1038/s41568-022-00456-3 |
[14] |
Fassl A, Geng Y, Sicinski P. CDK4 and CDK6 kinases: from basic science to cancer therapy. Science, 2022; 375, eabc1495. doi: 10.1126/science.abc1495 |
[15] |
Malumbres M, Barbacid M. To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer, 2001; 1, 222−31. doi: 10.1038/35106065 |
[16] |
Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer, 2017; 17, 93−115. doi: 10.1038/nrc.2016.138 |
[17] |
Landis MW, Pawlyk BS, Li TS, et al. Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell, 2006; 9, 13−22. doi: 10.1016/j.ccr.2005.12.019 |
[18] |
Reddy HKDL, Mettus RV, Rane SG, et al. Cyclin-dependent kinase 4 expression is essential for neu-induced breast tumorigenesis. Cancer Res, 2005; 65, 10174−8. doi: 10.1158/0008-5472.CAN-05-2639 |
[19] |
Yu QY, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation. Nature, 2001; 411, 1017−21. doi: 10.1038/35082500 |
[20] |
Yu QY, Sicinska E, Geng Y, et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell, 2006; 9, 23−32. doi: 10.1016/j.ccr.2005.12.012 |
[21] |
Puyol M, Martín A, Dubus P, et al. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell, 2010; 18, 63−73. doi: 10.1016/j.ccr.2010.05.025 |
[22] |
Fry DW, Harvey PJ, Keller PR, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther, 2004; 3, 1427−38. doi: 10.1158/1535-7163.1427.3.11 |
[23] |
Spring LM, Wander SA, Andre F, et al. Cyclin-dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: past, present, and future. Lancet, 2020; 395, 817−27. doi: 10.1016/S0140-6736(20)30165-3 |
[24] |
Bisi JE, Sorrentino JA, Roberts PJ, et al. Preclinical characterization of G1T28: a novel CDK4/6 inhibitor for reduction of chemotherapy-induced myelosuppression. Mol Cancer Ther, 2016; 15, 783−93. doi: 10.1158/1535-7163.MCT-15-0775 |
[25] |
He SH, Roberts PJ, Sorrentino JA, et al. Transient CDK4/6 inhibition protects hematopoietic stem cells from chemotherapy-induced exhaustion. Sci Transl Med, 2017; 9, eaal3986. doi: 10.1126/scitranslmed.aal3986 |
[26] |
Goel S, DeCristo MJ, Watt AC, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature, 2017; 548, 471−5. doi: 10.1038/nature23465 |
[27] |
Deng JH, Wang ES, Jenkins RW, et al. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov, 2018; 8, 216−33. doi: 10.1158/2159-8290.CD-17-0915 |
[28] |
Lai AY, Sorrentino JA, Dragnev KH, et al. CDK4/6 inhibition enhances antitumor efficacy of chemotherapy and immune checkpoint inhibitor combinations in preclinical models and enhances T-cell activation in patients with SCLC receiving chemotherapy. J Immunother Cancer, 2020; 8, e000847. doi: 10.1136/jitc-2020-000847 |
[29] |
Guan XN, LaPak KM, Hennessey RC, et al. Stromal senescence by prolonged CDK4/6 inhibition potentiates tumor growth. Mol Cancer Res, 2017; 15, 237−49. doi: 10.1158/1541-7786.MCR-16-0319 |
[30] |
Fang JS, Coon BG, Gillis N, et al. Shear-induced notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat Commun, 2017; 8, 2149. doi: 10.1038/s41467-017-01742-7 |
[31] |
Schaer DA, Beckmann RP, Dempsey JA, et al. The CDK4/6 inhibitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade. Cell Rep, 2018; 22, 2978−94. doi: 10.1016/j.celrep.2018.02.053 |
[32] |
Jerby-Arnon L, Shah P, Cuoco MS, et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell, 2018; 175, 984-97. e24. |
[33] |
Uzhachenko RV, Bharti V, Ouyang ZF, et al. Metabolic modulation by CDK4/6 inhibitor promotes chemokine-mediated recruitment of T cells into mammary tumors. Cell Rep, 2021; 35, 108944. doi: 10.1016/j.celrep.2021.108944 |
[34] |
Tan AR, Wright GS, Thummala AR, et al. Trilaciclib plus chemotherapy versus chemotherapy alone in patients with metastatic triple-negative breast cancer: a multicentre, randomised, open-label, phase 2 trial. Lancet Oncol, 2019; 20, 1587−601. doi: 10.1016/S1470-2045(19)30616-3 |
[35] |
Liu JJ, Su QD, Yi Y, et al. Anti-OX40 antibody combined with HBc VLPs delays tumor growth in a mouse colon cancer model. Biomed Environ Sci, 2024; 37, 187−95. |
[36] |
Yang LM, Zheng Q, Liu XJ, et al. Exosome-transmitted miR-224-5p promotes colorectal cancer cell proliferation via targeting ULK2 in p53-dependent manner. Biomed Environ Sci, 2024; 37, 71−84. |