[1] Briet A, Helsens N, Delannoy S, et al. NDM-1-producing Vibrio parahaemolyticus isolated from imported seafood. J Antimicrob Chemother, 2018; 73, 2578−9. doi:  10.1093/jac/dky200
[2] Pan JY, Ye ZC, Cheng ZY, et al. Systematic analysis of the lysine acetylome in Vibrio parahemolyticus. J Proteome Res, 2014; 13, 3294−302. doi:  10.1021/pr500133t
[3] Li Y, Zhang S, Li J, et al. Application of digital PCR and next generation sequencing in the etiology investigation of a foodborne disease outbreak caused by Vibrio parahaemolyticus. Food Microbiol, 2019; 84, 103233. doi:  10.1016/j.fm.2019.05.017
[4] Su YC, Liu CC. Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol, 2007; 24, 549−58. doi:  10.1016/j.fm.2007.01.005
[5] Xu F, Gonzalez-Escalona N, Haendiges J, et al. Sequence type 631 Vibrio parahaemolyticus, an emerging foodborne pathogen in North America. J Clin Microbiol, 2017; 55, 645−8. doi:  10.1128/JCM.02162-16
[6] Ji PF, Yao CL, Wang ZY. Reactive oxygen system plays an important role in shrimp Litopenaeus vannamei defense against Vibrio parahaemolyticus and WSSV infection. Dis Aquat Organ, 2011; 96, 9−20. doi:  10.3354/dao02373
[7] Zhao S, Ma LC, Wang Y, et al. Antimicrobial resistance and pulsed-field gel electrophoresis typing of Vibrio parahaemolyticus isolated from shrimp mariculture environment along the east coast of China. Mar Pollut Bull, 2018; 136, 164−70. doi:  10.1016/j.marpolbul.2018.09.017
[8] Ceccarelli D, Hasan NA, Huq A, et al. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front Cell Infect Microbiol, 2013; 3, 97.
[9] Zhang ZH, Lou Y, Du SP, et al. Prevalence of Vibrio parahaemolyticus in seafood products from hypermarkets in Shanghai. J Sci Food Agric, 2017; 97, 705−10. doi:  10.1002/jsfa.7715
[10] Tang KFJ, Bondad-Reantaso MG. Impacts of acute hepatopancreatic necrosis disease on commercial shrimp aquaculture. Rev Sci Tech, 2019; 38, 477−90. doi:  10.20506/rst.38.2.2999
[11] Wang L, Zhang JX, Bai HL, et al. Specific detection of Vibrio parahaemolyticus by fluorescence quenching immunoassay based on quantum dots. Appl Biochem Biotechnol, 2014; 173, 1073−82. doi:  10.1007/s12010-014-0904-4
[12] Fu KY, Zheng Y, Li J, et al. Colorimetric immunoassay for rapid detection of Vibrio parahemolyticus based on Mn2+ mediates the assembly of gold nanoparticles. J Agric Food Chem, 2018; 66, 9516−21. doi:  10.1021/acs.jafc.8b02494
[13] Xu DS, Ji L, Wu XF, et al. Detection and differentiation of Vibrio parahaemolyticus by multiplexed real-time PCR. Can J Microbiol, 2018; 64, 809−15. doi:  10.1139/cjm-2018-0083
[14] Craw P, Balachandran W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip, 2012; 12, 2469−86. doi:  10.1039/c2lc40100b
[15] Yao L, Ye YW, Teng J, et al. In vitro isothermal nucleic acid amplification assisted surface-enhanced raman spectroscopic for ultrasensitive detection of Vibrio parahaemolyticus. Anal Chem, 2017; 89, 9775−80. doi:  10.1021/acs.analchem.7b01717
[16] Piepenburg O, Williams CH, Stemple DL, et al. DNA detection using recombination proteins. PLoS Biol, 2006; 4, e204. doi:  10.1371/journal.pbio.0040204
[17] Yang HL, Wei S, Gooneratne R, et al. Development of a recombinase polymerase amplification assay for Vibrio parahaemolyticus detection with an internal amplification control. Can J Microbiol, 2018; 64, 223−30. doi:  10.1139/cjm-2017-0504
[18] Wu WY, Lebbink JHG, Kanaar R, et al. Genome editing by natural and engineered CRISPR-associated nucleases. Nat Chem Biol, 2018; 14, 642−51. doi:  10.1038/s41589-018-0080-x
[19] Pickar-Oliver A, Gersbach CA. The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol, 2019; 20, 490−507. doi:  10.1038/s41580-019-0131-5
[20] Xu RF, Qin RY, Li H, et al. Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J, 2017; 15, 713−7. doi:  10.1111/pbi.12669
[21] Hu XX, Wang C, Liu Q, et al. Targeted mutagenesis in rice using CRISPR-Cpf1 system. J Genet Genomics, 2017; 44, 71−3. doi:  10.1016/j.jgg.2016.12.001
[22] Kim Y, Cheong SA, Lee JG, et al. Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol, 2016; 34, 808−10. doi:  10.1038/nbt.3614
[23] Hur JK, Kim K, Been KW, et al. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol, 2016; 34, 807−8. doi:  10.1038/nbt.3596
[24] Port F, Bullock SL. Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs. Nat Methods, 2016; 13, 852−4. doi:  10.1038/nmeth.3972
[25] Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017; 356, 438−42. doi:  10.1126/science.aam9321
[26] Gootenberg JS, Abudayyeh OO, Kellner MJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 2018; 360, 439−44. doi:  10.1126/science.aaq0179
[27] Li SY, Cheng QX, Wang JM, et al. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov, 2018; 4, 20.
[28] Li LX, Li SY, Wu N, et al. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth Biol, 2019; 8, 2228−37. doi:  10.1021/acssynbio.9b00209
[29] Wang B, Wang R, Wang DQ, et al. Cas12aVDet: a CRISPR/Cas12a-based platform for rapid and visual nucleic acid detection. Anal Chem, 2019; 91, 12156−61. doi:  10.1021/acs.analchem.9b01526
[30] Chen JS, Ma EB, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018; 360, 436−9. doi:  10.1126/science.aar6245
[31] Zhang MY, Liu CZ, Shi Y, et al. Selective endpoint visualized detection of Vibrio parahaemolyticus with CRISPR/Cas12a assisted PCR using thermal cycler for on-site application. Talanta, 2020; 214, 120818. doi:  10.1016/j.talanta.2020.120818
[32] Wang R, Xiao XN, Chen Y, et al. A loop-mediated, isothermal amplification-based method for visual detection of Vibrio parahaemolyticus within only 1 h, from shrimp sampling to results. Anal Methods, 2017; 9, 1695−701. doi:  10.1039/C7AY00165G
[33] Rohrman BA, Richards-Kortum RR. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA. Lab Chip, 2012; 12, 3082−8. doi:  10.1039/c2lc40423k
[34] Chen SY, Ge BL. Development of a toxR-based loop-mediated isothermal amplification assay for detecting Vibrio parahaemolyticus. BMC Microbiol, 2010; 10, 41. doi:  10.1186/1471-2180-10-41
[35] Wang Y, Li DX, Wang Y, et al. Rapid and sensitive detection of Vibrio parahaemolyticus and Vibrio vulnificus by multiple endonuclease restriction real-time loop-mediated isothermal amplification technique. Molecules, 2016; 21, 111. doi:  10.3390/molecules21010111
[36] Geng YY, Tan K, Liu LB, et al. Development and evaluation of a rapid and sensitive RPA assay for specific detection of Vibrio parahaemolyticus in seafood. BMC Microbiol, 2019; 19, 186. doi:  10.1186/s12866-019-1562-z
[37] Yang XH, Zhao PP, Dong Y, et al. An improved recombinase polymerase amplification assay for visual detection of Vibrio parahaemolyticus with lateral flow strips. J Food Sci, 2020; 85, 1834−44. doi:  10.1111/1750-3841.15105
[38] Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012; 482, 331−8. doi:  10.1038/nature10886
[39] Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007; 315, 1709−12. doi:  10.1126/science.1138140
[40] Makarova KS, Zhang F, Koonin EV. SnapShot: class 2 CRISPR-Cas systems. Cell, 2017; 168, 328.e1.
[41] Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015; 163, 759−71. doi:  10.1016/j.cell.2015.09.038
[42] Swarts DC, van der Oost J, Jinek M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell, 2017; 66, 221−33.e4. doi:  10.1016/j.molcel.2017.03.016
[43] Stella S, Alcón P, Montoya G. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature, 2017; 546, 559−63. doi:  10.1038/nature22398
[44] Gao P, Yang H, Rajashankar KR, et al. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res, 2016; 26, 901−13. doi:  10.1038/cr.2016.88