[1] Kato K, Silva MJ, Reidy JA, et al. Mono(2-ethyl-5-hydroxyhexyl) phthalate and mono-(2-ethyl-5-oxohexyl) phthalate as biomarkers for human exposure assessment to di-(2-ethylhexyl) phthalate. Environ Health Perspect, 2004; 112, 327−30. doi:  10.1289/ehp.6663
[2] Koch HM, Rossbach B, Drexler H, et al. Internal exposure of the general population to DEHP and other phthalates--determination of secondary and primary phthalate monoester metabolites in urine. Environ Res, 2003; 93, 177−85. doi:  10.1016/S0013-9351(03)00083-5
[3] Fay M, Donohue JM, De Rosa C. ATSDR evaluation of health effects of chemicals. VI. Di(2-ethylhexyl)phthalate. Agency for Toxic Substances and Disease Registry. Toxicol Ind Healt, 1999; 15, 651−746. doi:  10.1177/074823379901500801
[4] Petersen JH, Breindahl T. Plasticizers in total diet samples, baby food and infant formulae. Food Addit Contam, 2000; 17, 133−41. doi:  10.1080/026520300283487
[5] Fromme H, Gruber L, Schlummer M, et al. Intake of phthalates and di(2-ethylhexyl)adipate: results of the Integrated Exposure Assessment Survey based on duplicate diet samples and biomonitoring data. Environ Int, 2007; 33, 1012−20. doi:  10.1016/j.envint.2007.05.006
[6] Halden RU. Plastics and health risks. Annu Rev Public Health, 2010; 31, 179−94. doi:  10.1146/annurev.publhealth.012809.103714
[7] Hinton RH, Mitchell FE, Mann A, et al. Effects of phthalic acid esters on the liver and thyroid. Environ Health Perspect, 1986; 70, 195−210. doi:  10.1289/ehp.8670195
[8] Hsu PC, Kuo YT, Leon Guo Y, et al. The adverse effects of low-dose exposure to Di(2-ethylhexyl) phthalate during adolescence on sperm function in adult rats. Environ Toxicol, 2016; 31, 706−12. doi:  10.1002/tox.22083
[9] Silva MJ, Barr DB, Reidy JA, et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. Environ Health Perspect, 2004; 112, 331−8. doi:  10.1289/ehp.6723
[10] Watanabe S, Uesugi S, Kikuchi Y. Isoflavones for prevention of cancer, cardiovascular diseases, gynecological problems and possible immune potentiation. Biomed Pharmacother, 2002; 56, 302−12. doi:  10.1016/S0753-3322(02)00182-8
[11] Hsieh HM, Wu WM, Hu ML. Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer's disease in C57BL/6J mice treated with D-galactose. Food Chem Toxicol, 2009; 47, 625−32. doi:  10.1016/j.fct.2008.12.026
[12] Rimbach G, Boesch-Saadatmandi C, Frank J, et al. Dietary isoflavones in the prevention of cardiovascular disease--a molecular perspective. Food Chem Toxicol, 2008; 46, 1308−19. doi:  10.1016/j.fct.2007.06.029
[13] Malencic D, Maksimovic Z, Popovic M, et al. Polyphenol contents and antioxidant activity of soybean seed extracts. Bioresour Technol, 2008; 99, 6688−91. doi:  10.1016/j.biortech.2007.11.040
[14] Occhiuto F, Zangla G, Samperi S, et al. The phytoestrogenic isoflavones from Trifolium pratense L. (Red clover) protects human cortical neurons from glutamate toxicity. Phytomedicine, 2008; 15, 676−82. doi:  10.1016/j.phymed.2008.04.007
[15] Cederroth CR, Nef S. Soy, phytoestrogens and metabolism: A review. Mol Cell Endocrinol, 2009; 304, 30−42. doi:  10.1016/j.mce.2009.02.027
[16] Mumford SL, Kim S, Chen Z, et al. Urinary Phytoestrogens Are Associated with Subtle Indicators of Semen Quality among Male Partners of Couples Desiring Pregnancy. J Nutr, 2015; 145, 2535−41. doi:  10.3945/jn.115.214973
[17] Medigovic IM, Zivanovic JB, Ajdzanovic VZ, et al. Effects of soy phytoestrogens on pituitary-ovarian function in middle-aged female rats. Endocrine, 2015; 50, 764−76. doi:  10.1007/s12020-015-0691-x
[18] Luo T, Snyder SM, Zhao B, et al. Gene Expression Patterns Are Altered in Athymic Mice and Metabolic Syndrome Factors Are Reduced in C57BL/6J Mice Fed High-Fat Diets Supplemented with Soy Isoflavones. J Agric Food Chem, 2016; 64, 7492−501. doi:  10.1021/acs.jafc.6b03401
[19] Silva P, Ribeiro TA, Tofolo LP, et al. Treatment with soy isoflavones during early adulthood improves metabolism in early postnatally overfed rats. Nutr Neurosci, 2018; 21, 25−32. doi:  10.1080/1028415X.2016.1213007
[20] Lenz EM, Wilson ID. Analytical strategies in metabonomics. J Proteome Res, 2007; 6, 443−58. doi:  10.1021/pr0605217
[21] Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999; 29, 1181−9. doi:  10.1080/004982599238047
[22] Zhang J, Yan L, Tian M, et al. The metabonomics of combined dietary exposure to phthalates and polychlorinated biphenyls in mice. J Pharm Biomed Anal, 2012; 66, 287−97. doi:  10.1016/j.jpba.2012.03.045
[23] Want EJ, Wilson ID, Gika H, et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc, 2010; 5, 1005−18. doi:  10.1038/nprot.2010.50
[24] Tepavcevic V, Atanackovic M, Miladinovic J, et al. Isoflavone composition, total polyphenolic content, and antioxidant activity in soybeans of different origin. J Med Food, 2010; 13, 657−64. doi:  10.1089/jmf.2009.0050
[25] Engel N, Lisec J, Piechulla B, et al. Metabolic profiling reveals sphingosine-1-phosphate kinase 2 and lyase as key targets of (phyto-) estrogen action in the breast cancer cell line MCF-7 and not in MCF-12A. PLoS One, 2012; 7, e47833. doi:  10.1371/journal.pone.0047833
[26] Zhang X, Choi FF, Zhou Y, et al. Metabolite profiling of plasma and urine from rats with TNBS-induced acute colitis using UPLC-ESI-QTOF-MS-based metabonomics--a pilot study. FEBS J, 2012; 279, 2322−38. doi:  10.1111/j.1742-4658.2012.08612.x
[27] Carpenter CP, Weil CS, Smyth HF, et al. Chronic oral toxicity of di-(2-ethylhexyl) phthalate of rats, guinea pigs, and dogs. AMA Arch Ind Hyg Occup Med, 1953; 8, 219−26.
[28] Dong X, Zhang Y, Dong J, et al. Urinary metabolomic profiling in rats exposed to dietary di(2-ethylhexyl) phthalate (DEHP) using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). Environ Sci Pollut Res Int, 2017; 24, 16659−72. doi:  10.1007/s11356-017-9091-5
[29] Huang C, Qiao X, Dong B. Neonatal exposure to genistein ameliorates high-fat diet-induced non-alcoholic steatohepatitis in rats. Br J Nutr, 2011; 106, 105−13. doi:  10.1017/S0007114510005799
[30] Sakai T. Studies on the evaluation of exposure to industrial chemicals. Sangyo Eiseigaku Zasshi, 1996; 38, 119−37.
[31] Manini P, Andreoli R, Niessen W. Liquid chromatography-mass spectrometry in occupational toxicology: a novel approach to the study of biotransformation of industrial chemicals. J Chromatogr A, 2004; 1058, 21−37. doi:  10.1016/S0021-9673(04)01312-3
[32] Zhong H, Liu H, Jiang Z. Genistein Ameliorates Fat Accumulation Through AMPK Activation in Fatty Acid-Induced BRL Cells. J Food Sci, 2017; 82, 2719−25. doi:  10.1111/1750-3841.13856
[33] Schug TT, Janesick A, Blumberg B, et al. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol, 2011; 127, 204−15. doi:  10.1016/j.jsbmb.2011.08.007
[34] Schaedlich K, Gebauer S, Hunger L, et al. DEHP deregulates adipokine levels and impairs fatty acid storage in human SGBS-adipocytes. Sci Rep, 2018; 8, 3447. doi:  10.1038/s41598-018-21800-4
[35] Jin Z, Bian F, Tomcik K, et al. Compartmentation of Metabolism of the C12-, C9-, and C5-n-dicarboxylates in Rat Liver, Investigated by Mass Isotopomer Analysis: ANAPLEROSIS FROM DODECANEDIOATE. J Biol Chem, 2015; 290, 18671−7. doi:  10.1074/jbc.M115.651737
[36] Salinari S, Bertuzzi A, Gandolfi A, et al. Dodecanedioic acid overcomes metabolic inflexibility in type 2 diabetic subjects. Am J Physiol Endocrinol Metab, 2006; 291, E1051−8. doi:  10.1152/ajpendo.00631.2005
[37] Wang SY, Wang Y, Jin XW, et al. A urinary metabolomics study of rats after the exposure to acrylamide by ultra performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Mol Biosyst, 2015; 11, 1146−55. doi:  10.1039/C4MB00682H
[38] Mortensen PB. Formation and degradation of dicarboxylic acids in relation to alterations in fatty acid oxidation in rats. Biochim Biophys Acta, 1992; 1124, 71−9. doi:  10.1016/0005-2760(92)90128-I
[39] Rusyn I, Peters JM, Cunningham ML. Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver. Crit Rev Toxicol, 2006; 36, 459−79. doi:  10.1080/10408440600779065
[40] Hakkak R, Gauss CH, Bell A, et al. Short-Term Soy Protein Isolate Feeding Prevents Liver Steatosis and Reduces Serum ALT and AST Levels in Obese Female Zucker Rats. Biomedicines, 2018; 6, 55. doi:  10.3390/biomedicines6020055
[41] Lee JH, Hwang CE, Cho EJ, et al. Improvement of nutritional components and in vitro antioxidative properties of soy-powder yogurts using Lactobacillus plantarum. J Food Drug Anal, 2018; 26, 1054−65. doi:  10.1016/j.jfda.2017.12.003
[42] Crane-Robinson C, Hebbes TR, Clayton AL, et al. Chromosomal mapping of core histone acetylation by immunoselection. Methods, 1997; 12, 48−56. doi:  10.1006/meth.1997.0446
[43] Viswanathan MP, Mullainadhan V, Chinnaiyan M, et al. Effects of DEHP and its metabolite MEHP on insulin signalling and proteins involved in GLUT4 translocation in cultured L6 myotubes. Toxicology, 2017; 386, 60−71. doi:  10.1016/j.tox.2017.05.005
[44] Boulange CL, Claus SP, Chou CJ, et al. Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways. J Proteome Res, 2013; 12, 1956−68. doi:  10.1021/pr400051s
[45] Rutkowski B, Slominska E, Szolkiewicz M, et al. N-methyl-2-pyridone-5-carboxamide: a novel uremic toxin? Kidney Int Suppl, 2003; 63, 19−21.
[46] Pelantova H, Buganova M, Holubova M, et al. Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination. Mol Cell Endocrinol, 2016; 431, 88−100. doi:  10.1016/j.mce.2016.05.003
[47] Lesaffer G, De Smet R, Belpaire FM, et al. Urinary excretion of the uraemic toxin p-cresol in the rat: contribution of glucuronidation to its metabolization. Nephrol Dial Transplant, 2003; 18, 1299−306. doi:  10.1093/ndt/gfg107
[48] Liabeuf S, Glorieux G, Lenglet A, et al. Does p-cresylglucuronide have the same impact on mortality as other protein-bound uremic toxins? PLoS One, 2013; 8, e67168. doi:  10.1371/journal.pone.0067168
[49] Jing Z, Wei-Jie Y. Effects of soy protein containing isoflavones in patients with chronic kidney disease: A systematic review and meta-analysis. Clin Nutr, 2016; 35, 117−24. doi:  10.1016/j.clnu.2015.03.012