[1] Alafeef M, Dighe K, Moitra P, et al. Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano, 2020; 14, 17028−45. doi:  10.1021/acsnano.0c06392
[2] Safiabadi Tali SH, LeBlanc JJ, Sadiq Z, et al. Tools and techniques for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/COVID-19 detection. Clin Microbiol Rev, 2021; 34, e00228−20.
[3] Seo G, Lee G, Kim MJ, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020; 14, 5135−42. doi:  10.1021/acsnano.0c02823
[4] Smyrlaki I, Ekman M, Lentini A, et al. Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR. Nat Commun, 2020; 11, 4812. doi:  10.1038/s41467-020-18611-5
[5] Cui FY, Zhou HS. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens Bioelectron, 2020; 165, 112349. doi:  10.1016/j.bios.2020.112349
[6] Sidiq Z, Hanif M, Dwivedi KK, et al. Benefits and limitations of serological assays in COVID-19 infection. Indian J Tuberc, 2020; 67, S163−6. doi:  10.1016/j.ijtb.2020.07.034
[7] Svobodova M, Skouridou V, Jauset-Rubio M, et al. Aptamer sandwich assay for the detection of SARS-CoV-2 spike protein antigen. ACS Omega, 2021; 6, 35657−66. doi:  10.1021/acsomega.1c05521
[8] Xu LZ, Li DY, Ramadan S, et al. Facile biosensors for rapid detection of COVID-19. Biosens Bioelectron, 2020; 170, 112673. doi:  10.1016/j.bios.2020.112673
[9] Roberts A, Chouhan RS, Shahdeo D, et al. A recent update on advanced molecular diagnostic techniques for COVID-19 pandemic: an overview. Front Immunol, 2021; 12, 732756. doi:  10.3389/fimmu.2021.732756
[10] Shahdeo D, Roberts A, Archana GJ, et al. Label free detection of SARS CoV-2 receptor binding domain (RBD) protein by fabrication of gold nanorods deposited on electrochemical immunosensor (GDEI). Biosens Bioelectron, 2022; 212, 114406. doi:  10.1016/j.bios.2022.114406
[11] Mahshid SS, Flynn SE, Mahshid S. The potential application of electrochemical biosensors in the COVID-19 pandemic: a perspective on the rapid diagnostics of SARS-CoV-2. Biosens Bioelectron, 2021; 176, 112905. doi:  10.1016/j.bios.2020.112905
[12] Fathi-Hafshejani P, Azam N, Wang L, et al. Two-dimensional-material-based field-effect transistor biosensor for detecting COVID-19 virus (SARS-CoV-2). ACS Nano, 2021; 15, 11461−9. doi:  10.1021/acsnano.1c01188
[13] Kashefi-Kheyrabadi L, Nguyen HV, Go A, et al. Rapid, multiplexed, and nucleic acid amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor. Biosens Bioelectron, 2022; 195, 113649. doi:  10.1016/j.bios.2021.113649
[14] Chaibun T, Puenpa J, Ngamdee T, et al. Rapid electrochemical detection of coronavirus SARS-CoV-2. Nat Commun, 2021; 12, 802. doi:  10.1038/s41467-021-21121-7
[15] Tran VV, Tran NHT, Hwang HS, et al. Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: potential for rapid COVID-19 detection. Biosens Bioelectron, 2021; 182, 113192. doi:  10.1016/j.bios.2021.113192
[16] Plamper FA, Richtering W. Functional microgels and microgel systems. Acc Chem Res, 2017; 50, 131−40. doi:  10.1021/acs.accounts.6b00544
[17] Karimian N, Zavar MHA, Chamsaz M, et al. On/off-switchable electrochemical folic acid sensor based on molecularly imprinted polymer electrode. Electrochem Commun, 2013; 36, 92−5. doi:  10.1016/j.elecom.2013.09.014
[18] Nyabadza A, Vázquez M, Coyle S, et al. Review of materials and fabrication methods for flexible nano and micro-scale physical and chemical property sensors. Appl Sci, 2021; 11, 8563. doi:  10.3390/app11188563
[19] Rasib SZM, Ahmad Z, Khan A, et al. Synthesis and evaluation on pH- and temperature-responsive chitosan-p(MAA-co-NIPAM) hydrogels. Int J Biol Macromol, 2018; 108, 367−75. doi:  10.1016/j.ijbiomac.2017.12.021
[20] Gao QF, Hu J, Shi JM, et al. Fast photothermal poly(NIPAM-co-β-cyclodextrin) supramolecular hydrogel with self-healing through host-guest interaction for intelligent light-controlled switches. Soft Matter, 2020; 16, 10558−66. doi:  10.1039/D0SM01501F
[21] Hou ZY, Zheng J, Zhang CF, et al. Direct ultrasensitive electrochemical detection of breast cancer biomarker-miRNA-21 employing an aptasensor based on a microgel nanoparticle composite. Sens Actuators B Chem, 2022; 367, 132067. doi:  10.1016/j.snb.2022.132067
[22] Kim SJ, Kim EM, Yamamoto M, et al. Engineering multi-cellular spheroids for tissue engineering and regenerative medicine. Adv Healthc Mater, 2020; 9, 2000608. doi:  10.1002/adhm.202000608
[23] Korotcenkov G, Brinzari V, Cho BK. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review. Microchim Acta, 2016; 183, 1033−54. doi:  10.1007/s00604-015-1741-z
[24] Zhang R, Wang S, Huang XM, et al. Gold-nanourchin seeded single-walled carbon nanotube on voltammetry sensor for diagnosing neurogenerative parkinson's disease. Anal Chim Acta, 2020; 1094, 142−50. doi:  10.1016/j.aca.2019.10.012
[25] Roberts A, Mahari S, Shahdeo D, et al. Label-free detection of SARS-CoV-2 Spike S1 antigen triggered by electroactive gold nanoparticles on antibody coated fluorine-doped tin oxide (FTO) electrode. Anal Chim Acta, 2021; 1188, 339207. doi:  10.1016/j.aca.2021.339207
[26] Bryan WW, Medhi R, Marquez MD, et al. Porous silver-coated pNIPAM-co-AAc hydrogel nanocapsules. Beilstein J Nanotechnol, 2019; 10, 1973−82. doi:  10.3762/bjnano.10.194
[27] Walker BW, Lara RP, Mogadam E, et al. Rational design of microfabricated electroconductive hydrogels for biomedical applications. Prog Polym Sci, 2019; 92, 135−57. doi:  10.1016/j.progpolymsci.2019.02.007
[28] Li WX, Hu L, Zhu JH, et al. Comparison of the responsivity of solution-suspended and surface-bound poly(N-isopropylacrylamide)-based microgels for sensing applications. ACS Appl Mater Interfaces, 2017; 9, 26539−48. doi:  10.1021/acsami.7b05558
[29] Li K, Chen X, Wang ZY, et al. Temperature-responsive catalytic performance of Ag nanoparticles endowed by poly (N-isopropylacrylamide-co-acrylic acid) microgels. Polym Compos, 2017; 38, 708−18. doi:  10.1002/pc.23630
[30] Fabiani L, Saroglia M, Galatà G, et al. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: a reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosens Bioelectron, 2021; 171, 112686. doi:  10.1016/j.bios.2020.112686
[31] Tian JJ, Liang ZX, Hu O, et al. An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochim Acta, 2021; 387, 138553. doi:  10.1016/j.electacta.2021.138553
[32] Zhao JL, Fu Z, Li HL, et al. Magnet-assisted electrochemical immunosensor based on surface-clean Pd-Au nanosheets for sensitive detection of SARS-CoV-2 spike protein. Electrochim Acta, 2022; 404, 139766. doi:  10.1016/j.electacta.2021.139766
[33] Ayankojo AG, Boroznjak R, Reut J, et al. Molecularly imprinted polymer based electrochemical sensor for quantitative detection of SARS-CoV-2 spike protein. Sens Actuators B Chem, 2022; 353, 131160. doi:  10.1016/j.snb.2021.131160
[34] Abrego-Martinez JC, Jafari M, Chergui S, et al. Aptamer-based electrochemical biosensor for rapid detection of SARS-CoV-2: nanoscale electrode-aptamer-SARS-CoV-2 imaging by photo-induced force microscopy. Biosens Bioelectron, 2022; 195, 113595. doi:  10.1016/j.bios.2021.113595
[35] Ehsan MA, Khan SA, Rehman A. Screen-printed graphene/carbon electrodes on paper substrates as impedance sensors for detection of coronavirus in nasopharyngeal fluid samples. Diagnostics (Basel), 2021; 11, 1030. doi:  10.3390/diagnostics11061030
[36] Silva PBD, Silva JRD, Rodrigues MC, et al. Detection of SARS-CoV-2 virus via dynamic light scattering using antibody-gold nanoparticle bioconjugates against viral spike protein. Talanta, 2022; 243, 123355. doi:  10.1016/j.talanta.2022.123355
[37] Daoudi K, Ramachandran K, Alawadhi H, et al. Ultra-sensitive and fast optical detection of the spike protein of the SARS-CoV-2 using AgNPs/SiNWs nanohybrid based sensors. Surf Interfaces, 2021; 27, 101454. doi:  10.1016/j.surfin.2021.101454
[38] Tao Y, Bian SM, Wang PB, et al. Rapid optical biosensing of SARS-CoV-2 spike proteins in artificial samples. Sensors (Basel), 2022; 22, 3768. doi:  10.3390/s22103768