[1] |
Wu JY, Lun ZR, James AA, et al. Dengue fever in mainland China. Am J Trop Med Hyg, 2010; 83, 664−71. doi: 10.4269/ajtmh.2010.09-0755 |
[2] |
Yue YJ, Liu XB, Xu M, et al. Epidemiological dynamics of dengue fever in mainland China, 2014–2018. Int J Infect Dis, 2019; 86, 82−93. doi: 10.1016/j.ijid.2019.06.015 |
[3] |
Yang XR, Quam MBM, Zhang TC, et al. Global burden for dengue and the evolving pattern in the past 30 years. J Travel Med, 2021; 28, taab146. doi: 10.1093/jtm/taab146 |
[4] |
Polwiang S. The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003-2017). BMC Infect Dis, 2020; 20, 208. doi: 10.1186/s12879-020-4902-6 |
[5] |
Morin CW, Comrie AC, Ernst K. Climate and dengue transmission: evidence and implications. Environ Health Perspect, 2013; 121, 1264−72. doi: 10.1289/ehp.1306556 |
[6] |
Bostan N, Javed S, Nabgha-E-amen, et al. Dengue fever virus in Pakistan: effects of seasonal pattern and temperature change on distribution of vector and virus. Rev Med Virol, 2017; 27, e1899. doi: 10.1002/rmv.1899 |
[7] |
Fletcher-Lartey SM, Caprarelli G. Application of GIS technology in public health: successes and challenges. Parasitology, 2016; 143, 401−15. doi: 10.1017/S0031182015001869 |
[8] |
Fotheringham AS, Charlton ME, Brunsdon C. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environd Plan A, 1998; 30, 1905−27. doi: 10.1068/a301905 |
[9] |
Sulekan A, Suhaila J, Wahid NAA. Geographically weighted regression on dengue epidemic in peninsular Malaysia. J Phys:Conf Ser, 2021; 1988, 012099. doi: 10.1088/1742-6596/1988/1/012099 |
[10] |
Huang B. Comprehensive geographic information systems. Elsevier. 2017. |
[11] |
Yan WB, He YL, Cai Y, et al. Analysis of spatiotemporal variability in extreme climate and potential driving factors on the Yunnan Plateau (Southwest China) during 1960–2019. Atmosphere, 2021; 12, 1136. doi: 10.3390/atmos12091136 |
[12] |
Indrayani F, Pramoedyo H, Iriany A. Geographically and temporally weighted regression modeling in analyzing factors affecting the spread of dengue fever in Malang. J Exp Life Sci, 2018; 8, 71−4. doi: 10.21776/ub.jels.2018.008.02.01 |
[13] |
Fotheringham AS, Crespo R, Yao J. Geographical and temporal weighted regression (GTWR). Geogr Anal, 2015; 47, 431−52. doi: 10.1111/gean.12071 |
[14] |
Liu Y, Lam KF, Wu JT, et al. Geographically weighted temporally correlated logistic regression model. Sci Rep, 2018; 8, 1417. doi: 10.1038/s41598-018-19772-6 |
[15] |
Ge L, Zhao YL, Sheng ZJ, et al. Construction of a seasonal difference-geographically and temporally weighted regression (SD-GTWR) model and comparative analysis with GWR-based models for hemorrhagic fever with renal syndrome (HFRS) in Hubei Province (China). Int J Environ Res Public Health, 2016; 13, 1062. doi: 10.3390/ijerph13111062 |
[16] |
Wei QB, Zhang LJ, Duan WB, et al. Global and geographically and temporally weighted regression models for modeling PM2.5 in Heilongjiang, China from 2015 to 2018. Int J Environ Res Public Health, 2019; 16, 5107. doi: 10.3390/ijerph16245107 |
[17] |
Kong LC, Xu CD, Mu PF, et al. Risk factors spatial-temporal detection for dengue fever in Guangzhou. Epidemiol Infect, 2019; 147, e32. doi: 10.1017/S0950268818002820 |
[18] |
Halstead SB. Dengue virus–mosquito interactions. Annu Rev Entomol, 2008; 53, 273−91. doi: 10.1146/annurev.ento.53.103106.093326 |
[19] |
Kraemer MUG, Reiner Jr RC, Brady OJ, et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol, 2019; 4, 854−63. doi: 10.1038/s41564-019-0376-y |
[20] |
Kweka EJ, Baraka V, Mathias L, et al. Ecology of Aedes mosquitoes, the major vectors of arboviruses in human population. In: Falcón-Lezama JA, Betancourt-Cravioto M, Tapia-Conyer R. Dengue Fever-a Resilient Threat in the Face of Innovation. IntechOpen. 2018. |
[21] |
Wang JL, Zhang HL, Sun XH, et al. Distribution of mosquitoes and mosquito-borne arboviruses in Yunnan Province near the China–Myanmar–Laos border. Am J Trop Med Hyg, 2011; 84, 738−46. doi: 10.4269/ajtmh.2011.10-0294 |
[22] |
Feng Y, Fu SH, Zhang HL, et al. Distribution of mosquitoes and mosquito-borne viruses along the China-Myanmar border in Yunnan Province. Jap J Infect Dis, 2012; 65, 215−21. doi: 10.7883/yoken.65.215 |
[23] |
Ramachandran VG, Roy P, Das S, et al. Empirical model for estimating dengue incidence using temperature, rainfall, and relative humidity: a 19-year retrospective analysis in East Delhi. Epidemiol Health, 2016; 38, e2016052. |
[24] |
Brady OJ, Golding N, Pigott DM, et al. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites Vectors, 2014; 7, 338. doi: 10.1186/1756-3305-7-338 |
[25] |
Pham HV, Doan HTM, Phan TTT, et al. Ecological factors associated with dengue fever in a central highlands Province, Vietnam. BMC Infect Dis, 2011; 11, 172. doi: 10.1186/1471-2334-11-172 |
[26] |
Pinontoan OR, Sumampouw OJ, Ticoalu J, et al. The variability of temperature, rainfall, humidity and prevalance of dengue fever in Manado City. Bali Med J, 2022; 11, 81−6. doi: 10.15562/bmj.v11i1.2722 |
[27] |
Benedum CM, Seidahmed OME, Eltahir EAB, et al. Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore. PLoS Negl Trop Dis, 2018; 12, e0006935. doi: 10.1371/journal.pntd.0006935 |
[28] |
Lu L, Lin HL, Tian LW, et al. Time series analysis of dengue fever and weather in Guangzhou, China. BMC Public Health, 2009; 9, 395. doi: 10.1186/1471-2458-9-395 |